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1. INTRODUCTION

This volume describes three engineering tasks, associated with the

Voyager spacecraft, which were performed as part of the Task D efforts.

These include shroud venting and separation, temperature control schemes,

and engine plume heating.

Vents for the configuration are described and separation and release

mechanisms for shroud sections and the planetary vehicles are discussed

in the shroud venting and separation study. A set of separation velocities

is suggested for each of the separating bodies, which will yield probabilities

of collision less than 10 -6 .

The investigation of temperature control schemes includes t) evalu-

ation of the predominant parameters affecting temperature excursions of

the spacecraft and its components; Z)the various possible temperature con-

trol schemes that can be used on the Voyager spacecraft; 3) application of

OGO, Pioneer, Mariner, Pegasus, andNimbus louver systems for Voyager;

and 4) design and fabrication parameters for insulations to assure repeat-

able insulation thermal characteristics. The results of the engineering

task recommend a preferred temperature control subsystem and a preferred

type of insulation with suggested design and fabrication parameters.

The third engineering task, engine plume heating, concerns LM De-

scent Engine plume heating and areas of impingement, and the effect on

critical spacecraft components of radiation from the nozzle extension. The

results of this task give the temperatures for critical spacecraft compo-

nents due to engine plume heating and nozzle radiation.
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2. SHROUD VENTING AND SEPARATION

2.1 SUMMARY

The Voyager shroud supports and protects two identical planetary

vehicles during the launch and boost phases of the mission and isolates

them from surface contaminants until there is no further sensible earth

atmosphere (Figure 2-1). During ascent, the contained atmosphere in

the shroud elements and planetary vehicle compartments must be vented,

and the planetary vehicles must each be separated from the launch vehicle

early in their interplanetary trajectories. Thus the shroud venting and

separation study task becomes one of investigating a system of vents for

the configuration, defining a design concept capable of performing the

required separation events, and finally performing a separation and

collision probability analysis of the individual separated elements.

PLANETARY PLANETARY
VEHICLE NO. I VEHICLE NO. 2

SHROUD CENTER SECTION / l NSTNRIL_N'4ENT

NOSE FAIRING _ r ^ • / /

BIOLOGICAL FORWARD FIELD AFT FIELD

BARRIER PLANETARY JOINT PLANETARY JOINT

VEHICLE VEHICLE

COMPARTMENT COMPARTMENT

Figure2-1

SHROUDCONFIGURATIONillustrates interchangeabilityofplanetaryvehiclesandcorrespondingshroudsections.Eachmoduleextendsfromfor-
wardbiologicalbarrier to field joint aft of eachplanetaryvehiclecompartment.

Figure 2-2 shows the recommended set of vent areas for the dif-

ferent elements of the configuration, based on allowable pressure

differentials determined by strength and contamination considerations

and using an assumed Saturn V ascent trajectory. These vents will allow

gradual decompression of the spacecraft, meet the contamination guide-

line, and eliminate residual atmosphere within the shroud compartment

and spacecraft by the time parking orbit is attained.
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CIRCULAR OPENINGS, (EIGHT EQUALLY SPACED FORWARD SKIRT 2
EACH 8.3 IN. DIA) OPENINGS, EACH iN. DIA) VENT AREA = 2.4 FT

/
TYPICAL BIOLOGICAL BARRIER p TYPICAL CONTROLLED VENT ^

CONTROLLED VENT AREA = 1.5 FT" FOR CAPSULE AREA =_0.25 FI lz
(FOUR CHECK VALVES OF 8.3 IN. 2 (FOUR CHECK VALVES OF 3.4 INS
FLOW AREA EACH SYMMETRICALLY FLOW AREA EACH SYMMETRICALLY

PLACED NEAR POLE OF SPHERICAL BARRIER) PLACED NEAR APEX OF UPPER CANISTER HALF)

Figure 2-2

AFT VENTING is recommended. Vent areas are based on maximum allowable pressure differentials plus minimum overpressure required to prevent

contamination during ascent. The atmosphere within the shroud at liftoff is dry, sterile nitrogen.

The sequence of separation events and the use of an over-the-nose

separating mode are dictated by the study guidelinel. Based on the

dynamic analysis described in Section 2.4, shroud separation planes have

been selected for the nose fairing and the shroud mid-section. In the

spacecraft configuration described in Volumes 2, 3, and 4, stowed appen-

dages and solar array are located well aft of the selected shroud separa-

tion plane. This requires the planetary vehicle to be guided "out of the

hole" during separation. A simple scheme for imparting a separation

impulse and guiding the planetary vehicle until it is clear of its shroud

is described in Section 2. 3.

Using the recommended separation design concept and separation

velocity for each of the elements, probabilities of collision of the shroud

elements with the planetary vehicles during all separation events are less

than lxlO "6", the analysis is described in Section Z. 4.

2.2 SHROUD VENTING

During the launch trajectory, the ambient atmospheric pressure

drops rapidly to a negligible value. In order to prevent large pressure

differentials across shroud components and planetary vehicle elements,

a system of vents is required. This system must allow gradual outflow

of the atmosphere, contained within the planetary vehicles and shroud
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elements, while retaining minimum positive differential pressures within

the sterile capsule and decontaminated spacecraft until the stage is above

the sensible atmosphere.

The vents for the capsule and the planetary vehicle compartment

must be controlled, i.e. , each has the capability of automatically restrict-

ing outflow to retain a given pressure differential, with the further

capability of being fully opened upon receipt of a signal to completely vent

down to external ambient. These controlled vents may be simple spring-

loaded check valves, with an over-riding solenoid to open them fully on

command. The nose fairing, shroud, and SIV-B forward vents are

uncontrolled, i.e. , they are merely openings in the structure to provide

the required flow areas without the capability of being regulated in any way.

The recommended vent configuration is shown in Figure 2-2. Efflux

from the controlled vents is directed into adjacent shroud compartments

rather than directly overboard to give greater reliability, allow more

flexibility in vent location, present simpler sealing demands, and incur

less risk of contamination than if these vents were directly exposed to

the turbulent boundary layer. Only the uncontrolled vents go directly

overboard.

In this configuration the sterile nitrogen atmosphere within each

planetary vehicle compartment vents aft. The required nose fairing vent

areas are small enough to minimize influx of hot boundary layer air and

consequent heating of the forward bulkhead during portions of the ascent.

Local shields over each opening can be used to restrict the inflow of hot

air further without restricting the flow areas.

Forward venting of each planetary vehicle compartment has also

been examined. The openings required in the nose fairing are consider-

ably larger than for aft venting; these would increase boundary layer

inflow and require more structural reinforcement. For these reasons

aft venting is the preferred approach.

Figure 2-3 shows some of the Voyager trajectory parameters used

in this analysis. Pressures within each compartment will decay rapidly

with time after liftoff since the external ambient decays to essentially

zero within 140 seconds, as shown in Figure 2-4. The controlled vents
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for the capsule and compartment have been fully closed long before that

point, maintaining the required positive pressures within the capsule and

planetary vehicle compartment. The stage altitude at that time is about

150,000 feet. When the SIV-B begins its burn to attain parking orbit, at

about ZOO seconds, the stage is at 300,000 feet; the controlled vents will

be opened at that point in the trajectory with the same signal that initiates

the SIV-B ignition. Well before parking orbit is achieved, at about 030

seconds, all portions of the capsule and spacecraft are fully vented so

that there will be no thrusting of the spacecraft and no gas impingement

on shroud components due to residual venting of entrapped gases during

subsequent separation events. Details of the venting analysis are given

in Appendix A.

Each electronic assembly will have sufficient vent area fn its own

cover to minimize any pressure differential across it. This is required

to purge the assemblies during their initial decontamination cycles and

to assure that no pressure differentials will be present during flight

which might damage the components or create thrusting gas streams.
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Only if a particular component requires the presence of a unique atmos-

phere, will it be sealed. The multilayer thermal insulation blankets use

perforated materials (1/8-inch holes, six inches on center) to allow them

also to vent down. It is estimated that the blankets on the recommended

spacecraft will vent their approximately 4. 5 pounds of contained nitro-

gen within two minutes. Any transient pressure differentials will be

small enough to avoid structural damage to the blankets.

Thus the whole spacecraft will vent down gradually as the atmos-

phere is traversed. No condensation from the dry nitrogen is anticipated

because of the low flow rates.

2.3 SEPARATION DESIGN CONCEPT

The separation design concept includes sequence and timing of

separation events, mode of separation, selection of separation planes,

and the means of separating the various elements with respect to each

other. A basic constraint is that each planetary vehicle and its separa-

tion mechanism, when installed in its compartment (Figure 2-5), be

completely interchangeable. Thus each encapsulated planetary vehicle

can serve in either the forward or aft position in the shroud. This sim-

plifies the sparing requirement: The spare encapsulated planetary

vehicle can take the place of either vehicle in the event of a malfunction

after planetary vehicle encapsulation.

The sequence of separation events during the mission has been

defined in the Reference 1 guidelines for this study: The nose fairing is

released as soon as possible after attainment of the parking orbit. The

last SIV-B burn injects the stage into the Mars trajectory. The first

planetary vehicle is then separated, followed by the shroud center section.

The second planetary vehicle is released last. These events are illus-

trated in Figure 2-6. Before each separation event the stage is resta-

bilized by the SIV-B attitude control system.

Each of these separation events is performed in an over-the-nose

mode, i.e., each separated element moves axially with respect to the

portion of the stage left behind, again in accordance with the guideline

requirement.
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I/2 MIN OVERPRESSURE

Figure 2-5

CONSTRAINTS ON PERMISSIBLE PRESSURE DIFFERENTIAL across

the shroud elements and capsule determine requirements for the
vent areas and controlled vent valves.

PARKING ORBIT

INJECTION

BURN

FAIRING

ORBIT

I NOSE FAIRING RELEASE

2 PLANETARY VEHICLE NO. I

3 SHROUD CENTER

4 PLANETARY VEHICLE NO. 2

Figure 2-6

SEPARATION EVENTS separation velocity imparted to nose fairing

during parking orbit puts into an eccentric orbit so that it gains

altitude with respect to the S IVB stage. Following injection, the final

three separation events are preformed as soon as real-time com-

munications are re-established for command override capability.

2. 3.1. Timing of Separation Events

Nose-fairing separation occurs as soon as possible after establish-

ment of parking orbit to minimize the probability of collision between the

fairing and the stage. With the constraint of minimum times in parking

orbit and the dynamics of the separating fairing, these probabilities are

very small (see Section 2.4).

The remaining separation events occur after injection. They should

begin as soon as possible after the SIV-B is shut down (including engine

tail-off), provided adequate real-time communication with the planetary

vehicles and stage is established for command over-ride capability. This

approach minimizes the demands on the SIV-B control system. It per-

mits all spacecraft appendages to be deployed and the solar array to start

recharging its batteries as soon as the vehicles leave the earth's shadow.

2.3.2 Selection of Separation Planes

The selection of separation planes depends on the spacecraft

configuration. The maximum diameter of the recommended spacecraft

at the fixed solar array is about i2 feet aft of the maximum flight capsule

diameter. Deployable elements are stowed within the limits of the

spacecraft dynamic envelope. With a single cut in the shroud for each

vehicle, considerable relative motion is required to free the planetary
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vehicle from the shroud. If the plane is near the capsule maximum

diameter, the spacecraft has to travel 12 feet before it is free of the

shroud. For this reason, it is desirable to separate as much of the

shroud as possible during the nose fairing separation event in parking

orbit to minimize the weight to be injected into the Mars trajectory. A

separation plane was therefore chosen 4.6 feet aft of the assumed maxi-

mum capsule diameter. This allows the nose fairing separation to in-

clude a considerable portion of the shroud. Yet it can separate without

any guidance mechanism. Appendix B contains the analysis on which this

selection of separation plane is based.

2.3.3 Shroud Separation System Design

A means of breaking the shroud circumferentially and imparting a

AV to the separated parts is required. In this process, the following

constraints are present:

a) The process should be contamination-free, both for the

release of gases or other combustion products, and for

the fragmentation of structural connections.

b) Shock to the structure and equipment must be minimized

to prevent damage or malfunction.

c) Joint weight must be low.

d) Separation reliability must be high.

e) There must be sufficient static clearances to prevent

hang -up.

The characteristics applicable to the Voyager shroud, from Refer-

ence 1, are:

I) Diameter of joint: 260 inches

2) Aerodynamic shroud loads (maximum shear = 156,000

pounds; moment = 74,000,000 inch-pounds)

3) Maintain maximum internal pressure of 5 psia

4) Withstand temperature range of -100 to 250°F.

In addition to the particular characteristics outlined above, the

separation technique should consider the following characteristics:
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l) Ability of separation system to impart _V to separated

parts of joints

2) Shock forces generated and their effects on the system

3) Capability of joint to be opened and closed nondestructively

4) Ability to provide a pressure-tight structure

5) Any particular hazards associated with the technique

6) Estimate of capability to be manufactured reproducibly

within design tolerances.

The recommended separation system for the shroud section consists

of two independent elements: a means of fracturing the shroud, and a

means of imparting a AV to the separated parts. Selecting a nonthrusting

type of separation joint permits the AV mechanism alone to control the

impulse imparted to the separating part. Such control is desirable for

the Voyager shroud because of its large size. A design concept for a

nonthrusting shroud separation joint is described in Section 2.5.

The recommended scheme of imparting a AV to the separating

shroud parts consists of four preloaded compression springs, equally

spaced around the separation plane. These springs are sized to

provide the required impulse and can be matched before installation in a

manner similar to that used on other spacecraft projects by TRW Systems,

such as OGO. The matched set of springs limits tip-off velocities of the

separating parts to values well below limiting values. These have been

used in the selection of the separation plane station as described in

Appendix B.

Advantages of springs are:

a) Reliability: automatically actuated when joint is separated

b) Analytically predictable

c) Can be tested.

For the current design, each of the four springs has a rate of

9. Z pounds/inch with a lZ-inch working stroke. This provides the impulse

required to achieve the 2-feet/second selected nose-fairing separation

velocity, as described in Section 2.4, and also the shroud center section

separation velocity.
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2.3.4 Planetary Vehicle Separation Mechanism

As described in Section 2.3.2, a separation plane for the planetary

vehicle compartment has been selected that is 4.6 feet below the capsule

maximum diameter. The planetary vehicle must then move some 7.4 feet

before the danger of impacting the shroud is past. A scheme has been

selected to separate, impart an impulse, and provide sufficient guidance

to the planetary vehicle as it comes out of the hole.

The planetary vehicle is supported in the shroud by the planetary

vehicle adapter which is described in Volume 3. There are 12 points of

attachment between the vehicle and its adapter, with a dual redundant

release device (Figure 2-7) at each. The device uses two explosive

bolts to retain a split collar around an interface bolt; actuation of either

explosive bolt will release the collar to initiate separation. The device

and its reliability are discussed in Volume 3.

PROPULS ION

MODULE

FITTING

EXPLOSIVE

BOLTS

ADAPTER

FITTING

SEPARATION

• SPRING

MATED SEPARATED

Figure2-7
PLANETARYVEHICLE/ADAPTERRELEASEMECHANISMfiringeitherexplosiveboltreleasestheplanetaryvehicleandallowsit to separatebytheaction
of thesprings.
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A preloaded compression spring near each of the release devices is

used to impart a separation impulse to the planetary vehicle. With 12

springs, the perturbation impulse, due to errors in the spring which tends

to impart lateral and rotational motions to the spacecraft, will be statis-

tically small. Each of these springs has a spring constant of 16.6 pounds/

inch with a working stroke of 12 inches. This provides the recommended

separation velocity for a 22,000-pound planetary vehicle.

Expected spacecraft center-of-mass offsets will not produce unac-

ceptable rotations of the spacecraft. Full advantage is taken of the

available spacecraft dynamic envelope to maximize the solar array diam-

eter, which is the largest diametric dimension. Since clearance between

the array diameter and dynamic envelope is nominally one inch on the

radius, it is necessary to provide lateral restraint for the spacecraft

within the shroud to ensure a margin of safety for the separation event.

A concept for this restraint is shown in Figure 2-8. Four equally

spaced channels, attached to the shroud between the solar array and the

separation plane, act as rails. A roller is attached to the solar array

opposite each channel. Its function is to react any spacecraft lateral

motion against the sides of the channel. Clearance is provided for each

roller when the spacecraft is attached to its adapter, to allow the shroud

to deflect during the high dynamic pressure portions of the trajectory

without inducing loads in the solar array. Once the spacecraft is released,

the rollers move within the confines of the channels, with only enough

clearance to take up spacecraft and shroud assembly tolerances without

loading the array.

Any contact between rollers and channel sides will induce loads only

in the plane of the solar array. Such loads are expected to be small, less

than 100 pounds, because of the flexibility of the channel and array and

the small component of the separation force that induces such contact.

This scheme is relatively simple and, since the center-of-mass

offsets will be known with reasonable accuracy, will be very reliable.

For example, with one-half-inch unknown offset, and a planetary vehicle

AV of 2 feet/second, the planetary vehicle will rotate at a rate of

0.0023 radian/second with a total rotation of 0.50 degree when it clears

the shroud. The lateral excursion will be about 0.75 inch at that time.
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An alternative scheme involves slowly elevating the planetary vehicle

until the solar array is near the plane of the shroud opening; then a set of

springs, imparting a separation impulse, is released. This is described

in Reference Z. It is a relatively complex scheme compared to the

recommended design.

2.4 SEPARATION DYNAMICS AND COLLISION ANALYSIS

This section describes the analysis of the separation dynamics of

the shroud elements and planetary vehicles, and the collision probabilities

of the separating parts. The effects of shock loads generated by the

pyrotechnic separation devices on the spacecraft design are also discussed.

The sequence and timing of separation events has been discussed

in Section 2.3.

2.4. 1 Nose Fairing Separation

The over-the-nose method of nose-fairing separation was discussed

in Section 2.3. Of interest here is what happens following the nose-

fairing separation event.

Once pyrotechnic severance has been completed, an impulse is

imparted to the nose fairing by the shroud separation springs, injecting

it into an eccentric orbit from the circular parking orbit so that it gains

altitude with respect to the stage. The nose fairing continues to move

forward and higher with respect to the stage and reaches its maximum

distance ahead of the stage in about 10 minutes. At approximately 18

minutes (an interval that is essentially independent of separation velocity),

the stage has caught up with and is passing below the fairing. The dis-

tance between them is approximately 1200 feet for each foot per second

of initial separation velocity (Figure 2-6)

The stage will continue to move ahead of and below the nose fairing

until re-ignition of the SIV-B propulsion system for the injection burn.

Then the stage's orbital path becomes increasingly eccentric as the stage

gains altitude climbing above the nose-fairing orbit. The nose fairing at

this time is far behind.

The time-span of interest then is from 15 minutes to 18 minutes

after earth parking orbit acquisition or, if stabilization requires as long
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as one minute, from 14 to 18 minutes. Collision probabilities for this

period were calculated with the aid of equations and data extracted from

Reference 3. Table 2-1 gives the probability of impact between the fair-

ing and the vehicle as a function of time after nose-fairing separation (Tc)

and its separation velocity.

Table 2-1. Nose-Fairing Collision Probability

T
c AV=I AV = 2 AV = 4

(minutes) (feet/second)

14 2.06 x 10 -4 7.38 x 10 -10

15 9. 16 x 10 -6 4.82 x 10 -14

16 2.01 x 10 -6 2.91 x 10 -22

17 5. 11 x 10 -8 4.30 x 10 -43

-10
18 2.31 x I0 --

-18
1.79x I0

4.22 x I0 -2_̂

5.57 x 10 -52

Since the nose fairing is separated as soon as possible after earth

parking orbit is achieved, if the time in parking orbit is greater than

18 minutes, the likelihood of the stage colliding with the nose fairing

becomes extremely small. In reviewing trajectory data, launch oppor-

tunities, etc., for the 1973-1979 missions, it was found that the shortest

time in parking orbit may be as low as 15 minutes. As shown in Table 2-1,

the collision probabilities increase rapidly as time between nose-fairing

separation and termination of parking orbit decreases; therefore, the

fairing separation event must occur as soon as possible after orbit acqui-

sition. Following the S-IVB burn, only stage stabilization should be per-

formed before the separation.

Details of this analysis are in Appendix C.

On the basis of these results, a nose-fairing separation velocity of

2 feet/second is selected to provide sufficiently small collision probabili-

ties. The shroud separation springs of Section 2.3.3 are sized for this

AV.

Because the two planetary vehicle compartments are interchange-

able, the shroud center section separation velocity will be determined
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by these same springs. It will be seen in the next section that planetary

vehicle separation velocities are also uniquely determined once the

nose-fairing separation velocity is selected.

2.4.2 Post-Injection Separations

The timing of post-injection separation events is discussed in

Section 2.3. 1.

To minimize collision probabilities with the over-the-nose separating

mode, it is desirable to have the value of the nominal velocity of the

center section midway between the nominal velocities of the two planetary

vehicles. Then the probabilities of collision between the shroud center

section and each of the separating vehicles will be equal.

A post-injection collision probability analysis is shown in Appendix D,

including a calculation of the velocities of each of the separating bodies.

These are interdependent and, as stated in Section 2.4.1, are uniquely

determined once the nose-fairing separation velocity is selected.

With a nose-fairing separation velocity of 2 feet/second, the

velocities of Table 2-2 follow. The planetary vehicle separation springs

described in Section 2.3.4 are sized on this basis. For nose-fairing

separation velocities other than 2 feet/second, these velocities will

change proportionately.

Table 2-2. Separation Velocities of Separating Bodies
(Based on Nose-Fairing Separation
Velocity of 2 feet/second)

Forward planetary vehicle

Shroud Center Section

Aft planetary vehicle

Note 1 Note 2

17.2 in. /sec

12.0 in. /sec

7.0 in. /sec

24.0 in. /sec

20.6 in. /sec

27.0 in. /sec

Note 1.

Note 2.

Velocities relative to the center of mass of the
injected configuration; differences between these
velocities are true relative velocities between

separating elements.

Velocities relative to the portion of the configura-
tion from which the element separates.
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With these velocities, collision probabilities will all be less than

1 0-6 (Appendix D).

As an alternate separating configuration, it is feasible to bias the

attitude control system of the SIV-B to separate the shroud center section

in a direction away from the stage velocity vector. This would eliminate

the interdependence of the nose-fairing separation velocity from the

planetary vehicle separation velocities. However, since the collision

probabilities, without requiring additional SIV-B steering, are acceptably

low, no further consideration is given to this alternate.

2.4.3 Separation Shock Environment

In addition to collision hazards during shroud and planetary vehicle

separation, the pyrotechnic devices themselves induce shock loads which

will affect the design of many spacecraft components.

l=_rrotechnic separation, both for the shroud elements and the

planetary vehicles, as well as spacecraft appendage release devices as

described in Volumes 3 and 4, will induce shocks throughout the space-

craft. The magnitude of these shocks and their effect on the spacecraft

are discussed in Appendix E.

Estimates of such shock levels are stated. It is concluded, however,

that although in a qualitative sense the configuration design with its

particular locations of separation planes and other devices will not cause

serious shock problems, additional analysis is required to determine

realistic design and test criteria for critical equipment elements.

2.5 SHROUD DESIGN AND CONTAMINATION CONSIDERATIONS

2.5.1 Shroud Design

The guideline document, Reference 1, includes most of the detail

design concepts of the shroud structure and a candidate shroud fracturing

scheme. This separation scheme is described in some detail along with

some further considerations of it.

Some contamination considerations of the shroud and the shroud

separation process are also mentioned.
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The recommended shroud fracturing system, shown in Figure 2-9

as extracted from Reference 1, employs pyrotechnics in a noncontamin-

ating, stressed-skin system. The system consists of a conventional mild

detonating fuse (M_DF) completely contained within an expansible jacket

which imparts the full pressure pulse generated by the detonating lVIDF

UPPER SHROUD. LOWER SHROUD

IIllill 0 : : ,i::ylllllli
MDF 7-]0 GRAINS/FT I t

JACKET
SEPARATION PLANE

CONNECTING

EMBER LOWER SHROUD

UPPER SHROUD 7 I CONTAMINANT-FREE SEPARATION JOINT

Figure 2-9

SHROUD SEPA RATION JOINT Non-thrusting, contamination-free design uses MDF in an expansible jacket to fracture a groove in the

connecting member. Upper drawings shows alignment pins used to take out lateral loads at several circumferential locations. Lower

drawings shows tension-compression tie.

core to the surrounding structure and then to the designed failure point

(i. e., "V" groove) without permitting escape of the explosive products.

The expansible jacket is captured between a backup structure and a doubler

strip which is designed to fail the length of a carefully machined V notch

the entire length of the strip.

The operation of the system consists of initiating the MDF at its

ends with an encapsulated initiator. As the explosive shock progresses

through the expansible jacket, it causes the doubler strip to sever at

the groove due to the expansion of the gases within the expansible jacket.

Since the expansible jacket is wholly on one side of the joint, there is no

appreciable thrusting of the separated elements. After the doubler

strips have severed, the jacket continues to expand and pushes on the two

severed halves of the broken doubler; due to their permanent deflection
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after fracturing, i. e., the slope of the local meridian is no longer zero

at the fracture, and a small thrust component results.

System reliability and noncontamination are the over-riding selec-

tion criteria. Other considerations which make this selected concept

favorable are:

Improved efficiency by using the maximum energy
available in MDF

• Reduced pyrotechnic shock impulse level

• Improved safety and reliability of linear

separation applications

• Ability to maintain a seal against an internal

pressure

• Capability of joint to be opened nondestructively

• Access capability from the exterior of the vehicle

• Simplicity of the design indicates that the parts can

be manufactured reproducibly within the design
tolerances

• Separation joint may also serve as a field joint.

While this concept appears to have considerable merit, flight

experience with this system does not exist, and evaluation testing will

be required to develop the confidence required for application of this

device to the Voyager program. The means of sealing a joint like this

must be included in its further development.

The encapsulating jacket must retain its elastomeric strength to

function properly. Testing is required to establish its permissible

temperature ranges.

Shock pulses are generated in the structure due to the breaking of

the doubler strip and the explosive shock. These pulses must be

measured and factored into the design random and acoustical vibration

environments described in Volume 3.

This type of joint is similar to one currently being developed by

Lockheed Missiles and Space Corporation for TRW Systems Group for a
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shroud whose application is classified. Verification tests on this joint

are currently in progress.

Other types of joints were examined briefly. Explosive bolts or

nuts are generally used for smaller shrouds, but the sealing problem plus

the large size of the Voyager shroud would make the reliability of a

system using a discrete number of electroexplosive elements very poor.

Thrusting joints such as the one developed by Douglas (Reference 4) are

undesirable since their impulse is difficult to control; they are more

suited to clam-shell shroud separations.

2.5.2 Contamination Considerations

The shroud design described in Reference 1 can meet the following

cleanliness standards:

• Surface is smooth to facilitate physical cleaning
and is free of cracks, crevices, protuberances,
etc., that would entrap particles.

• Able to maintain a positive overpressure within
compartment so that all leakage will be from
within.

• Has controlled vent system

• Shroud separation system contains all debris

• Shroud compartments are hermetically sealed
and free of leaks.

The shroud can be decontaminated according to procedures outlined

in Volume 9. As Reference I points out, the major concern is the effect

of antibiological agents on shroud materials, particularly the honeycomb

bond adhesives. Volume 9 describes materials compatible with ethylene

oxide.

It is possible, with a fracturing joint, that fragments or particles

will be ejected at rupture. With the planned trajectory, velocities of

these particles of about 100 feet/second {relative to the planetary vehicle)

are required for the particles to have any probability of independently

impacting Mars. These particles can be considered to emanate from

two general areas around the rupturing notch of Figure Z-9: either they

will include a portion of machined surface, on either side of the notch,
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or they will be from the virgin portion from within the notched element

which has not been exposed to the atmosphere since doubler strip was

rolled and machined.

Virgin metals are contamination-free below the first few thousandths

of an inch of depth from their surfaces. Metals more than several

thousandths of an inch thick are impervious, and are subjected to melting

temperatures above 1300°F during alloying.

Small particles containing surface elements, which are presumed

to be contaminated, will be heated by sunlight during transit to Mars.

With black paint on one surface, temperatures will attain values above

260°F, which is sufficient to eliminate any viable organisms well before

entering the Martian atmosphere.

Thus it is concluded that there is no reasonable probability that a

particle released at any shroud separation joint will contaminate the

planet surface.
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"Voyager Spacecraft--Phase B, TaskD Guidelines," MSFC,

14 July 1967, reprinted by TRW as VVV-353, 17 July 1967.

TRW Interoffice Memo 67-35212-216, "Voyager Planetary Vehicle

Separation Mechanism (Elevator), " 21 September 1967.

"Description of Design Considerations for the Voyager 1971 Space-

craft Utilizing the Saturn V Launch Vehicle Configuration, " JPL

Report No. PD-86, June 1966.

Space-Aeronautics, July 1966, p. 86.
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system using a discrete number of electroexplosive elements very poor.

Thrusting joints such as the one developed by Douglas (Reference 4) are

undesirable since their impulse is difficult to control; they are more

suited to clam-shell shroud separations.

2.5.2 Contamination Considerations

The shroud design described in Reference 1 can meet the following

cleanliness standards:

• Surface is smooth to facilitate physical cleaning
and is free of cracks, crevices, protuberances,
etc., that would entrap particles.

• Able to maintain a positive overpressure within
compartment so that all leakage will be from
within.

• Has controlled vent system

• Shroud separation system contains all debris

• Shroud compartments are hermetically sealed
and free of leaks.

It can be sterilized and decontaminated according to procedures

outlined in Volume 9. As Reference 1 points out, the major concern is

the effect of antibiological agents on shroud materials, particularly the

honeycomb bond adhesives. Volume 9 describes materials compatible

with ethylene oxide and other decontaminating agents.

It is possible, with a fracturing joint, that fragments or particles

will be ejected at rupture. With the planned trajectory, velocities of

these particles of about 100 feet/second (relative to the planetary vehicle)

are required for the particles to have any probability of independently

impacting Mars. These particles can be considered to emanate from

two general areas around the rupturing notch of Figure 2-12: either

they will include a portion of machined surface, on either side of the

notch, or they will be from the virgin portion, i.e., from wholly within

the notched element never having been directly exposed to atmosphere

since being formed into the plate from which the doubler strip was rolled

and machined.
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Virgin metals are contamination-free below the first few thousandths

of an inch of depth from their surfaces. Metals more than several

thousandths of an inch thick are impervious, and are subjected to melting

temperatures above 1300°F during alloying.

Small particles containing surface elements, which are presumed

to be contaminated, will be heated by sunlight during transit to Mars.

With black paint on one surface, temperatures will attain values above

260°F, which is sufficient to eliminate any viable organisms well before

entering the Martian atmosphere.

Thus it is concluded that there is no reasonable probability that a

particle released at any shroud separation joint will contaminate the

planet surface.
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3. TEMPERATURE CONTROL

3.1 INTRODUCTION AND SUMMARY

This engineering task investigated: 1) predominant parameters

affecting spacecraft and component temperature excursions; Z) various

possible temperature control schemes; 3} OGO, Pioneer, Mariner,

Pegasus, and Nimbus louver systems for Voyager use; and 4) design

and fabrication parameters for insulation to assure repeatable thermal

char acte ris tic s.

The predominant parameters affecting temperature excursions of

the spacecraft are environment, orientation, internal heat dissipation,

and engine firing. Methods of minimizing and/or controlling these

temperature excursions have also been summarized, based on infor-

mation from TRW studies. For Voyager an insulated enclosure with

variable heat dissipation devices (louvers) is required.

Numerous temperature control concepts were investigated during

tradeoff studies made in Reference 3-1 through 3-4. A careful review was

made of all the concepts investigated during the previous TRW studies of

Voyager. A summary of the various temperature control schemes and

their effectiveness in the Voyager application is presented in Section 3.3.

From the review of these possible concepts, an optimized temperature

control subsystem for the Voyager application was selected. The optimum

scheme is a combination passive-active system using the totally insulated

enclosure concept, thermal louvers, thermostatically controlled heaters,

thermal finishes, and varying degrees of structural thermal coupling.

OGO, Pioneer, Mariner, Pegasus, and Nimbus louver systems

were compared for Voyager use. OGO, Pioneer, Mariner, and Pegasus

use bimetallic actuated louvers. Nimbus uses two-phase fluid actuated

louvers. Bimetallic actuated louvers were selected as the preferred

louver system because of their reliability, lower weight per square foot,

simplicity, and proven flight performance. The design and operating

characteristics are presented in Section 3.4 along with a summary of

the louver study.
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Various types of insulation were considered for Voyager applica-

tions. The effect on uncertainties in insulation thermal properties, due

to repeatability considerations generated by fabrication and installation

procedures, has been evaluated analytically and empirically. Additional

work should be done to evaluate this factor on the basis of test and statis-

tical analysis. The design factors considered were type of insulation,

number of layers, blanket size, attachment, perforations, overlapping,

interleaving, and blanket contour. Various seams and joint designs were

studied for manufacturing feasibility and design integrity. The thermal

performance for the insulation was based on existing test data. A sum-

mary of the insulation design and fabrication study and the selected insu-

lation technique is presented in Section 3.5. Multilayer crinkled aluminized

Mylar was selected as the preferred insulation because it provides the

best thermal performance with minimum weight. The preferred method

of attachment is Velcro tape since it provides ease of removal with mini-

mum weight.

3.2 DEFINITION OF THERMAL CONTROL PARAMETERS

3.2. 1 Introduction

During this engineering task, it was required that predominant

parameters which cause large temperature excursions during all phases

of the mission be identified. These include environment, orientation,

engine firing, and internal heat dissipation. The methods of controlling

or minimizing the temperature excursions are the thermal control tech-

niques used. The sum total of the thermal control techniques is the

temperature control subsystem. Overall temperature control is sensi-

tive to the requirements of each piece of equipment within the spacecraft,

to the varying environmental extremes, and to the spacecraft orientations.

3.2.2 Environmental

During the Voyager mission (Figure 3-1) the spacecraft will be

subjected to such environmental conditions as:

I) Launch. Heating from the shroud during launch and
boost
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LOW SOLAR FLUX
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+ROLL SPACECRAFT _ _C "_
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HIGH SOLAR FLUX _ /_'_" A_
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EAR T_ _ _ _

SUN

Figure3-1
HOTANDCOLDCONDITIONSDURINGMISSIONdictatedesignrequire-
mentsfor ternQeraturecontrolsubsystem.Solarinput variesfrom
442BTU/HRFT_ nearearthto 159nearMarsandzeroduring Mars
eclipse.

2) Near-earth. Solar heating on the solar array, base

of spacecraft, and the engine at a near-earth solar

flux of 44Z Btu/hr-ft 2. Spacecraft subject to earth

albedo and emission.

3) Near-Mars. Solar heating on the solar array, base

of spacecraft, and engine at a near-Mars solar flux

of 159 Btu/hr-ft 2. Spacecraft subject to Mars albedo

and emission.

4) Eclipse. No solar heating on spacecraft.

3.2-. 3 Orientation

The temperature control subsystem is required to provide the

desired thermal environment for all spacecraft orientations. The

Voyager spacecraft is normally fully attitude-stabilized utilizing

celestial references (sun and Canopus). Solar radiation is normally

colinear with the axis of the engine (Figure 3-I). For this orientation,

only the solar arrays, the insulation on the base of the spacecraft, the

engine, and some of the appendages see the sun. There are, however,

periods when the spacecraft is not attitude-stabilized. These occur

during earth eclipse, initial stabilization, first interplanetary trajectory

correction, Mars orbit insertion, capsule release, and Mars eclipse.

During these periods, any portion of the spacecraft may see the sun.

During eclipse periods, however, there is no solar heat input to the

spacecraft.

3. Z. 4 Engine Firing

During engine firings, the spacecraft is subjected to plume heating

and nozzle radiation, particularly during:
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1) First Interplanetary Trajectory Correction Transient.

A_n upper bound hot condition associated with the first

interplanetary trajectory correction. The engine firing

is 380 seconds (1700-pound thrust, insulated nozzle).

Soakback effects upon the solar array, engine components,

feed lines, and spacecraft structure can cause excessive

temperatures.

z) Mars Orbit Insertion Transients. The low temperature

prior to firing, thermal shock, and soakback effects.

The engine firing is 380 seconds (9850-pound thrust,

insulated nozzle).

3. Z. 5 Internal Heat Dis sipation

Wide variation in internal heat dissipation (150 watts prelaunch

to 700 watts orbital operation) requires a temperature control subsystem

that is capable of dissipating varying amounts of waste heat. During

eclipse, it is desirable to have a minimum amount of heat radiated to

space. But during near-Mars insolation, it is desirable to radiate to

space all the heat dissipated by the equipment.

3.3 COMPARISON OF TEMPERATURE CONTROL SCHEMES

3.3. 1 Introduction

Temperature control of a spacecraft and its components is

accomplished by maintaining a thermal balance between internally

generated heat, external heat sources, and external radiant emission, at

temperature levels within the temperature limits of the components. The

system must conform to these limits for all phases of the mission, must

provide repeatable thermal performance, and must be reliable. The

basic tradeoffs are between an insulated and an uninsulated spacecraft and

between passive and active temperature control or a combination of

the two.

3.3. Z Insulated Versus Uninsulated

In the insulated concept, a closed, insulated envelope minimizes

the effects of environmental extremes, orientation, and engine firing.

It also eliminates a complex radiation analysis and permits predictable

control of component temperatures by means of appropriate radiation

areas.
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An uninsulated spacecraft would require thermal shielding of

spacecraft components. This imposes higher heat dissipation require-

ments on the temperature control subsystem during hot conditions and

higher heater power requirements on the system during the cold conditions.

The uninsulated concept would be more complicated and less predictable.

For the Voyager application the insulated concept has been selected

to minimize the effects of the thermal control parameters defined in

Section 3. Z. External surfaces are covered with insulation except for

the radiating areas. Possible insulations for Voyager application are

presented in Section 3.5 with a preferred insulation selected. Possible

control techniques for the radiating areas are discussed in Section 3.3.3.

3.3.3 Passive Versus Active

Passive temperature control employs the inherent thermal

properties of the spacecraft structure and its materials, the spacecraft

geometry, motion, and orientation to maintain the temperature of the

spacecraft. This type of system is extremely reliable and simple.

The weight associated with this system is minimized since there are no

moving parts. The types of thermal control techniques that are

considered to be passive are:

I) Surface coatings

Z) Structural thermal coupling

3) Insulation

4) Radiation panels.

External surface temperature can be controlled by proper selection

of the solar absorptivity (_) to emissivity (_) ratio. Figure 3-2 indicates

that, for _/e = 0.3, the equilibrium surface temperatures at i. 0 and I. 6

AU are 75 and -50°F, respectively. A wide variety of surface finishes

(thermal coatings) or combinations thereof can be used to achieve this

or almost any other desired ratio.

In many cases, thermal coatings alone are inadequate to control

heat flow in and out of the vehicle. Insulation is therefore used

to provide additional control of heat flux and local temperature
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Figure 3-2

EQUI LI B RI UM TEMPERATURES are dependent on the ratio of absorp-

tance to emittance for external surface and distance from the sun.

levels. This is further supplemented by the choice of thermal coupling

(i.e., low or high conductivity joints) and of thermal control of struc-

tural materials. Geometry and orientation are utilized to shade radi-

ating surfaces. Thermal control of equipment is implemented by choice

of equipment surface emissivities and limitation of baseplate power

density (i.e., heat dissipation per unit of baseplate area).

A fully passive system, sized to accommodate the hot condition,

would require a large radiating area. The large radiating area represents

a large heat loss during eclipse. The heat loss from the radiator would

be greater than the heat dissipation from the components. Thus the

components would drop below their lower temperature limits. Conversely,

sizing the radiators passively for cold conditions causes high spacecraft

component temperatures during hot conditions.

A fully passive temperature control system is unable to satisfy the

Voyager requirements. The addition of a few relatively simple active

thermal control elements can, however, create an acceptable tempera-

ture control subsystem. In general, these elements are actuated by

on-board temperature levels or differences at or near the point of control.

Thermostatically controlled heaters can be used to hold components

within narrow temperature limits. The simplest of such heaters (TRW
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Specification PT4-13004) is the on-off type, operating within some

design bandwidth of temperatures. Either thermostats (TRW Specification

PT2-2004) or proportional controllers (TRW Specification PT4-10) can be

used to control the heating rate. The proportional controller gives

finer temperature control but at the cost of increased weight and

complexity. Figure 3-3 shows a comparison of the two control methods.

For the Voyager application, where most of the components have wide

temperature bands, the thermostat provides adequate control.

ON-OFF THERMOSTATICALLY CONTROLLED

HEATER J HEATER J CONTROL ACTUATOR UPPER

F LIMIT SENSITIVITY-- ON _ OFF --J
l UPPER DESIGN

_ _ _ I I i_ _ __/IL,M,T

I

CONTROL ACTUATOR LOWER LOWER DESIGN

LIMIT SENSITIVl]'Y LIMIT

PROPORTIONAL CONTROLLER

UPPER DESIGN LIMIT

....... J

HEATER ACTION

f
CONTROL ACTUATOR RANGE

/7-
LOWER DESIGN LIMIT

Figure3-3

HEATERS- Thermostaticcontrolcomparedwith proportionalcontrol.

TIME

Temperature-responsive radiation louvers have been used

successfully in the OGO, Pioneer, Mariner, Pegasus, and Nimbus

spacecraft. The function of these louvers is to vary the effective

emissivity of a radiating surface in response to temperature. There

are numerous methods of actuation for the louvers. Mariner, OGO,

Pioneer, and Pegasus make use of bimetallic actuators. Nimbus uses

two-phase fluid-actuated louvers. A comparison of these louver

systems is made in Section 3.4.

A thermal switch has been investigated recently by TRW Systems on

a study and research basis. The switch is a device whose thermal conduc-

tivity varies from zero or nearly zero to relatively high values in response
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to changes in temperature levels. A laboratory model (References 3-5)

that achieved a 38:1 control range has been built and tested. A study was

made (Reference 3-6) of another switch which is somewhat similar and,

though simpler, was less efficient in operation. Thermal switches are

still in a development stage. They are more complex and less reliable

than louvers. In the Voyager application, when relatively high heat rates

are encountered, the thermal switch is inappropriate as the closed resist-

ance to heat transfer is high compared to louvers requiring many switches.

for the batteries or TWT's for example.

Heat pipes have been investigated in the laboratory at TRW. In

physical appearance, they consist of several internal capillary layers,

enclosed with a small amount of working fluid in a tube that is sealed

at both ends. Heat transport is accomplished by vaporization of the

contained fluid at the heated end of the tube and its condensation at the

cool end. Vapor transport is brought about by small pressure differences

within the system and liquid return by capillary action of the material

lining the tube interior. The heat pipe will transfer heat at a high rate

unless the cut-off temperature of the working fluid is reached. This is

the temperature at which the fluid freezes. Below this temperature

any heat transport is by conduction through the materials alone.

Theoretically, the heat pipe may have an unlimited number of geometries.

Actual limitations are due to engineering considerations, and the most

useful shape yet to arise is that of a long, thin cylinder connecting a

heat source to a heat sink. The most suitable capillary wick is annular

and fits snugly against the central core of the pipe; returning condensate

flows through the annular wick. For Voyager, it is desirable to develop

a two-dimensional heat pipe. This could be used to distribute the heat

from components with excessively high power density (i. e., TWT) and

with concentrated heat sources (sequential shunts).

On a major system level, active thermal control design may be

described as composed of numerous interrelated thermal control

subsystems, most of which employ active elements such as radiators,

pumps, valves, louvers, heaters, evaporators, and switches. Generally,

the system is designed to handle not only large heat fluxes, but also
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large changes in total load. Operational mode may be varied automati-

cally or manually. Fluid loops are used extensively to transport heat

from point of origin to point of rejection, since normal passive measures

are incapable of sustaining required heat fluxes across the temperature

gradients which are the result of design temperature levels.

With high and variable heat rejection from electronic components,

a fluid loop can be used to transport heat from the electronics to a point

of ejection. The heat can be dissipated to space by use of a radiator,

boiler, or sublimator. The typical radiator {Figure 3-4) is a closed-

loop system in which the fluid or transport medium is pumped through
a cold plate under the electronics, then pumped to radiator surfaces

which have a good view of space and are isolated from solar heat input.

This type of system could be used in the Voyager spacecraft, but it is

heavy, not too reliable, and quite complicated. In order for this system

to be redundant, it is necessary to provide dual lines and pumps. The

Apollo program uses a recirculating glycol/water loop with a water

boiler {Figure 3-5}. Dual pumps and valves are required for failure

mode reliability. This open-loop-tube system would not be desirable

for the Voyager program because of the penalty required to carry

sufficient water for the boiler to meet the requirement for six months
in Mars orbit.

Sublimators are also undesirable because, although they weigh

less than boilers, they are still too heavy to be practical for space

applications.

Active thermal systems, capable of meeting the heat-load, life,

and reliability requirements of spacecraft, are inherently too complex

and bulky to be practical. Adequate redundancy in an active system can

only be provided by duplication of components. Protection from micro-

meteoroid damage has to be provided for each of the components in an

active system and, in particular, for the fluid lines. The fluids used

in an active system would have to provide the following items:

1) High specific heat

2) Low viscosity

3) Lightweight

4) Low freezing temperature.
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Figure3-4
COOLINGSYSTEM- Closeoloop.

Figure3-5
COOLINGSYSTEM-Openloop.

In most present spacecraft applications of active fluid systems,

potential freezing problems have been encountered. Normally a glycol/

water medium has been used. It is possible, however, to use a

commercial fluid such as Dov_herm, which has a lower freezing point

than glycol/water but is still not adequate for space applications.

The best active system from a Voyager application standpoint

appears to be a mechanically active system which uses louver blades

covering a radiator panel. Section 3.4 presents a comparison of various

possible louver systems for Voyager application.

3.3.4 Conclusions and Recommendations

From the standpoint of the varying natural and induced environ-

ments in which the Voyager spacecraft must operate, the most desirable

temperature control subsystem consists of a combination active-passive

system. The passive components of the system are:

I) Surface finishes to obtain desired thermal radiation

properties

2) Appropriate location and mounting of electronic

e quipm ent
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3) Structural design to  achieve various degrees of 

thermal  coupling 

4) Multilayer aluminized. Mylar insulation. 

The active components of the system are:  

1) Louvers 

2) Thermostatically controlled heaters.  

Temperature control of the basic spacecraft is achieved by 

covering the entire outside of the spacecraft with multilayer insulation, 

except for  radiation a reas  on the equipment panels which a r e  covered 

by the louver assemblies. This type of system is highly reliable and 

will provide maximum redundancy. 

3.4 LOUVER COMPARISON 

3.4. 1 Bimetallic Actuated Louvers 

3.4. 1. 1 Description 

Mariner, OGO, Pioneer, and Pegasus make use of bimetallic 

actuated louvers. 

Table 3-1 shows a comparison of bimetallic actuated louvers and two- 

phase, fluid-actuated louvers. The louver shafts a r e  coupled to coiled 

bimetallic elements (Figure 3-7) which contract o r  expand i n  response 

to temperature. 

to fully open over a relatively narrow temperature range. 

of the Pioneer louvers is  40 to 85'F. 

open over a 27 F temperature range. 

Figure 3-6 presents an OGO louver assembly panel. 

The louver blades a r e  thus rotated f rom fully closed 

The range 

OGO louvers go f rom closed to 
0 

Figure 3-6 
PREFERRED LOUVER ASSEMBLY has been spacequal i f ied o n  the  
OGO series of scient i f ic  satell i tes and has  been in  trouble-free 
operation d u r i n g  more t h a n  two years in earth o r b i t  
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Table 3-1. Comparison of Louvers

Two-Phase Fluid B im etallic

Service (at a

given temperature

change)

Structural effects

(launch loads)

Louver operation

Louver closure

Ground operation

Redundancy

technique

Failsafe

accommodate

Space irradiation

Development

Potential

problem

Moderate force range

at large deflections

Not serious

Gang operation

Tight closure seal

Pressure-compensated

bellows functionally

independent of ambient

pressure

Twin actuators

Not difficult

May be a problem

Moderate: Test experi-
ence validates fluid

selection, filling

procedures, sensor tube

location, and bellows

design

i. Space irradiation

effects

2. Filling procedure

critical

Small force at small

deflections

Critical: Subject to

hysteresis and spring

unwinding

Individual blade

operation

Closure sealing
difficult

As is

Not possible (adjacent

blades assume

control)

Difficult; limited

return spring force

capability if at all

None

Moderate: Trial/

error design,

structural design
critical

I. Structural degra-

dation from

vibration,

temperature, and

cycling

Z. Heat flow to

sensor may not

be predictable

or repeatable
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Table 3-I. Comparison of Louvers (Continued)

Two-Phas e Fluid Bimetallic

Advantage s

3. Superheat control

o Micrometeoroid

puncture/leakage

1. Moderate forces
available

_Q

o

o

So

GE-MSD past design/

test data

Redundancy

incorporation not

difficult

Fast response to

temperature

changes

Failsafe in closed

position easy to

accomplish

6. Tight blade
closure

o

e

Failsafe difficult

to accommodate

Blade full close

heat leak may be

excessive

5. Temperature

response slow

I. Simple, compact

_o

e

Built-in

redundancy

unless many

fail

Unaffected by

ir radiation

BIMETAL ACTUATION

INNER /

. ouw 

EQUIPMENT PANEL

Figure3-1
SPIRALBIMETALACTUATION
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On Mariner, the louvers are fully closed at 55°F and fully open

at 85°F. The OGO bimetal spring is highly magnetic (Z000 7 at 6 inches),

but it can be demagnetized to 4Z _ at 6 inches.

The weight of the bimetal is 0.9 pound per square foot. It is

flight proven and is highly reliable. Individual blade actuation makes

this louver assembly multiredundant. The only disadvantage of a

bimetallic actuated louver is that the bimetal provides a very small

force for opening or closing the louver. This mechanism develops a

torque of about 0.01 inch pound. As a result of this small force, the

blade size is limited. The maximum blade width is approximately

? inches and the maximum blade length is approximately 15 inches.

Lubrication requirements for bimetals can be met by use of molybdenum

disulfide-impregnated, sintered silver bearings. These bearings are

used on both OGO and Pioneer.

3.4. I. 2 Application

The OGO type louver shown in Figure 3-6 is proposed for

Voyager application. Each louver unit consists of the louver blade,

support bearings at each end, plastic end fittings, a bimetallic spring,

and stops to limit the fully closed and open positions. The louver blades

are lightweight, center-rotating members constructed of two 0. 005-inch

aluminum sheets spotwelded together along the two edges. The surfaces

are bare, highly reflecting and specular. The bimetallic actuators serve

dual purposes of sensing the local mounting panel temperature and

providing the driving torque necessary to rotate the louver blades.

The actuators are placed alternately at opposite ends of the louvers,

thereby providing a more even distribution of the sensing elements over

the equipment mounting panel. The complete louver system, including

all hardware, weighs 0. 9 pounds per square foot.

Selection of the bimetal is based on a requirement of the maximum

temperature sensitivity and high temperature-torque characteristics

consistent with minimum size and weight. The coil has a free length of

38 inches and a torque constant of 0. 0016 in-pounds per degree Fahren-

heit. A 14°C change in temperature rotates the louvers 90 degrees
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from fully closed to fully open. The nominal operating range of the

louvers is 17°C to 32°C (63°F to 90°F).

Thermally coupling the bimetal springs to the mounting panel is

accomplished by anchoring the fixed end to the panel, oxidizing the

bimetal to obtain a high infrared emittance, and insulating the free end

from the louver by means of a low thermal conductivity plastic end

fitting. In addition, further isolation from the varying external thermal

environment is accomplished by means of an insulated housing.

Louver blades rotate in one-eighth-inch inside-diameter sleeve

bearings which are housed in a bearing support bracket at each end of

the louver assembly. Selection of reliable bearing and shaft materials

and lubricants was recognized early as a problem area in the OGO

program. A test program was developed and an extensive series of

bearing tests was conducted in high vacuum. A series of sintered silver

alloys containing various percentages of molybdenum disulfide and

molybdenum disulfide and graphite were tested along with two different

shaft lubricants and coatings.

The tests were run continuously for periods up to 90 days in a

vacuum between 1 x 10 .7 and 5 x 10 .7 mm Hg. Up to 360,000 cycles

were obtained in addition to cycling interrupted by dwell periods of

74 hours and one week. On the basis of these test results, a bearing

composed of 80 percent silver and 7.0 percent molybdenum disulfide

sintered material was selected for OGO and appears to be applicable

to the Voyager along with a shaft coating consisting of a molybdenum

disulfide in a sodium silicate binder. For this combination of materials,

the highest starting torques experienced were 0. 033 inch-pounds. This

corresponds to a temperature increase of the bimetallic actuator of

about 1.5°F to overcome worst-case static friction torques.

Tests of bimetallic actuated louver assemblies have been conducted

as a part of the OGO and Pioneer program to determine their perfor-

mance after repeated cycling of the louver position as well as vibration

tests to ensure mechanical integrity under anticipated launch conditions.

The OGO cycling tests were performed in air with a side assembly
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containing 51 louvers by placing it in a cold environment where the

louvers were closed and then heating the actuators with heat lamps to

drive the loux_ers open. At the completion of the test, no out-of-tolerance

performance or other damage was detected. Vibration tests were run

with a smaller 4-louver unit. These initial tests revealed structural

weaknesses at the ends of the louvers as well as failure of some of the

spot welds. Redesign improved the structural integrity until the develop-

ment models passed unit mechanical qualification vibration levels.

The vibration levels are given below:

Sinusoidal, One Sweep per Axis

5-250 cps

3.5 g rms

20-2000 cps

250-400 cps

6. 5 grms

O. 1 g2/cps

400-3000 cps

12 g rms

1Z minutes per axis

Thermal characteristics of the louver system of OGO and Pioneer

have been examined experimentally and analytically for selected con-

ditions. The test consisted of an assembly of louvers, whose position

could be mechanically controlled, mounted over a radiation panel having

a hemispherical infrared emittance of e = 0.86. Electrical power was

supplied to heaters mounted to the back of the panel to simulate either

uniform or concentrated, non-uniform heat distribution. The backside

was insulated to keep the heat losses small; the losses also were

evaluated by first running a test with a similar insulated cover in place

of the louvers, determining the total heat transfer and then apportioning

the loss through the back from the ratio of surface areas. The test

was conducted in vacuum with the chamber wall maintained at liquid

nitrogen temperature. From these tests it was learned that neither

transient temperature lag of the actuators when the panel was suddenly

cooled, nor the louvers, nor a concentrated heat source under the actuator

housing can cause the temperature of the mounting panel to exceed the

acceptable temperature levels. It was also learned that the average

actuator temperature was about 4°C colder than the local radiating plate

temperature, requiring a correction in the calibration to offset this

temperature difference.
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The effective surface emissivity of a radiating panel with a surface

emissivity _ = 0.8 is decreased with the presence of the louvers. A sub-

stantial portion of the loss in efficiency is attributed to the thickness of the

louver blades, since they occupy 11 percent of the panel area in the open

position. Because of the space between the louver blades and the actuator

housing and a narrow gap between the louvers themselves, an uncertainty

range exists in a region where the louvers are fully closed. When

evaluating the louver performance this uncertainty was always included

in the analysis by assuming two values, each value conservative for a

given situation. Thus, the larger value is taken in the cold condition

and smaller in the hot.

3.4. 1.3 Reliability

Test data on the similar projects are used in the reliability calcu-

lations. Test results are given in Reference 3-7.

In these tests there were 510, 000 individual louver cycles with

no failures. The mechanism failure rate can be calculated:

Q-l-R,

where

Q - the mechanism failure rate/cycle

R - the mechanism reliability/cycle

Reliability (R) can be calculated:

Rn= 1 -_,

whe r e

Thus

n = the number of test cycles = 510, 000

= the desired confidence level (50 percent
confidence level is used here)

Rn=l-y

Rn= 0.5
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InR = in 0t 5 =
n

-0. 693 i. 36 x 10 -6
0.51 x 106 = "

g.

-I. 36 x I0 -v -kc
R=e =e

whe re

k = failure rate in cycles

c = 1 cycle

Since

Q=I-R

Thus

Q = 1 - e-1"36x 10-6 : 1 - e-k

but for small exponents Q = k

Q = k = 1.36x 10 -6 = 1.4x I0 6

The failure rate is thus calculated to be I. 4 x 10-6 Failures/cycle.

It is estimated that the louver system will be subjected to 500

operative cycles during the mission, For the purposes of this analysis,

it is assumed that the mission phase cyclic louver operation will be

proportional to the mission phase duration. Thus the operative cycles

assigned for each phase are as follows:

Phase Operative Louver Cycles

1 0

Z Z47

3 3

4 4Z

5 Z08
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Using X = I.4 x I0-6 failures/cycle and R = e-kc
where c = cycles/

phase as above, mechanical mission phase reliability is calculated to be

Rl> 0.96

R 2 = 0. 936542

R 3 = 0. 9558

R 4 = 0. 94412

R 5 = 0. 937088

R = 0. 933
m

System rnis sion phase reliability calculations:

Rs I > 0.96

RsZ = 0. 9488

Rs3 = 0.9 6

Rs4 = 0.9 6

Rs5 = 0.9 6

R = 0. 9484
s
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3.4. Z Two-Phase Fluid Actuated Louvers

3.4. Z. 1 Description

The Nimbus (Reference 3-8) two-phase, fluid-actuated louvers make

use of fluid-filled bellows driving a piston which then actuates the louvers.

Figure 3-8 presents a schematic of the Nimbus louver system. The

panel surface temperature is sensed by a tube soldered to the panel

and containing a liquid-vapor mixture. One end of the tube is sealed;

the other end is connected to a bellows actuator with a spring-loaded

return. Motion of the bellows actuates the louvers by means of a rack

and pinion linkage. As the temperature of the panel rises, the

temperature of the liquid also rises and increases the vapor pressure

within the tube and bellows. The increase in vapor pressure causes

an increase in vapor volume which displaces the bellows by an

equivalent volume. The bellows is forced out against the load of the

spring return until a balanced position is reached causing the louver

to pivot to a new position. The Nimbus louvers are designed to be fully

closed at 77°F and fully open at 95°F panel surface temperature.

MOVABLE INSULATION

ON LOUVERS

'° UAT'NG

GAS BUBBLE HEAT FROM ELECTRONIC COMPONENTS

Figure3-8
NIMBUSLOUVERSACTUATION
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In the event of a failure caused by loss of actuating fluid, a

positive fail-safe feature is used by Nimbus to open the shutters to a

predetermined angle best suited to maintain operating temperature.

In the Voyager application, this would not be desirable because of the

long Mars eclipse. Redundancy could be built into the system by using

two fluid-filled bellows driving two pistons. Each of the actuators would

be sufficient to drive all of the louvers in that assembly so that failure

of one actuator could be tolerated with no los s in temperature control

performance.

3.4. Z. Z Application

A proposed two-phase fluid-actuated louver system (Reference 3-9)

for Voyager application is shown in Figure 3-9. This system makes

use of two fluid-fiUed bellows driving two pistons which actuate the

louvers. The bellows actuator is of two-phase fluid design which

ouerates under limited vapor superheating. The control fluid is ethyl

chloride, and its normal operating pressure ranges from 10.8 psia at

40°F to Z0 psia at 70°F (saturation conditions). The fluid is contained

in a beryllium copper bellows that is silver soldered to the housing and

to the piston inner stop. The actuator is a pressure-compensated design

in which actuator motion is independent of ambient pressure. This is

accomplished by a secondary bellows soldered to the reverse side of

the piston face. The space between the housing and the bellows and

within the secondary bellows is evacuated.

The louver assembly is shown in Figure 3-9. Each louver is

suspended on the in-board face by support adapters from either end and

modulates as the individual drive drum rotates. This method of

suspension minimizes louver heat leak and maximizes the panel radiating

area for a given louver assembly envelope. The use of individual drive

drums permits the remaining louvers to operate if a louver fails. The

basic drive linkage is an aluminum cross-link bar which runs the height

of the panel traveling beneath the column of drive drums. It is joined

to the drums by twin beryllium copper tapes connected both for clockwise

and counter-clockwise rotation. Two actuators are used per assembly

for redundancy. The actuators are offset from the crosslink by individual
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Figure 3-9

PROPOSED TW0-PHASE LOUVER ASSEMBLY

side links which are joined to the actuator piston end through a spherical,

seated connector that permits limited angular misalignment between the

two. A calibration nut at the connector is provided for temperature bias

control or adjustment and, in addition, to permit disassembly of the

louver frame without removing the bellows actuator from the thermal

control/shear panel.

In order to avoid potential lubrication problems under extreme

vacuum-temperature conditions and long-term wear effects, conventional

bearings are not employed. Self-lubricating coatings are used for link

sliding supports (to limit lateral or axial motion)since material loss

under long-term vacuum exposure is not critical there. Flexure pivot

bearings have been selected for the louver mounts (at the undriven end)

since they do not require lubrication and do not produce static friction

or have any significant hysteresis effect. Spiral coil springs, integral

with each drive drum, support each louver at the driven end.

The 90-degree flexure pivot has a restraining ring overhang to

prevent lateral deflection. The spiral coil spring serves as a

restraining force (acting against the actuator force) for positioning the

louver in a closed (counter-clock-wise) position. The closed position,

therefore, is maintained if the actuator fails.

3-22



All materials employed are nonmagnetic. Support bracketry is

fiberglas with hard-anodized aluminum fittings. Linkages and lateral

supports are anodized alurninuIn. The actuator housing is nonmagnetic

stainless steel, and the bellows material is beryllium copper. Louver

material consists of phenolic honeycomb, faced on the external and

internal surfaces with a_uminum sheets.

Two-phase fluid actuation has been successfully space-flight

proven and successfully thermal-vacuum tested in conjunction with the

Nimbus program. The system characteristics are compared to bimetallic

actuated louvers in Table 3-1.

3.4.2.3 Reliability

Test data on similar projects are used in the reliability calcula-

tions. Test results are given in Reference 3-10. The reliability

formulas for the mechanism and the system are the same as in

Section 3.4. 1.3

Calculation results are:

R = 0. 9464
1

R z = 0.93475

R 3 = 0..951

R 4 = 0.9413

R = 0.93564 ,
5

R = 0.928907
In

Rsl = 0.96

Rs2 = 0.957

Rs3 = 0.96

Rs4 = 0.958

R = 0.957
s5

R = 0.948
S
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3.5 INSULATION DESIGN PARAMETERS

3.5.1 Introduction and Summary

The purpose of this study is to select the preferred insulation

and to establish design and fabrication parameters.

The temperature control subsystem for Voyager is based on the

insulated enclosure concept (Section 3.3). Voyager requires insulation

that operates under steady-state vacuum with a thermal conductance of

0. 001 Btu/hr-ftZ-°F when the interior and exterior layers of the insula-

tion are +85 and -315°F, respectively.

Various insulations were investigated. The lowest thermal

conductances for each type and their associated weights are tabulated

in Table 3-2. Only multilayer insulations meet the requirements.

It generally consists of a series of separated, highly reflective, opaque,

radiation shields.

Table 3-Z. Comparison of Various Types of Insulation

Thermal Conductance

Insulation (Btu_in/hr_ftZ-OF) Weight (Ib/ft z)

Foam plastics 0. 141 0. 167

Glass fiber 0.01X 0. 306

Powders 0. 0036 0. 584

Multilayer 0. 00045 0.13

In determining design parameters a number of insulations were

considered (i. e., Dimplar, crinkled aluminized Mylar, aluminized Mylar

with separators}. For Voyager, crinkled aluminized Mylar is preferred.

It has an optimum layer density of 70 layers/inch and an optimum aluminum

deposit thickness of 500 angstroms. The blankets are 1 inch thick and

consist of 70 layers of 1/4 rail crinkled aluminized Mylar with a 3 mil

aluminized Mylar face sheet on each side. They are large, covering one

side of the spacecraft, and flat. Velcro tape is the preferred method of

attachment since it allows the insulation to be removed without damage.
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However, some additional attachment is required to sustain the insulation

during boost (Section 3.5.2). The blankets are perforated to prevent

ballooning during launch and to provide access for the decontamination

gases.

Fabrication requires extreme care in handling, assembly and instal-

lation. Details of the fabrication parameters are presented in Section 3.5.3.

3.5.2 Design Parameters for Multilayer Insulation

The basic design parameters are: required thermal characteristics,

weight, and compatibility with the natural and induced environment for the

Voyager spacecraft. Table 3-3 presents a summary of the design

parameters.

Table 3-3. Summary, Design Parameters

Parameter
Effect on

ldeal_ _ Thermal

Conductance
Cost

I. Induced Environment

1. Decontamination

a)

b)

Decontamination gas (ethylene oxide) at IZZ°F

I) 3 cycles

Z) 6 cycles

Decontamination gas (ethylene oxide), 35 to 50

percent relative humidity, lZ;'°F

l)

z)

No effect on conductance

Gas and water vapor pre-mixed - adequate Water condensate removes

gas circulation aluminum deposit; if have

good gas circulation,

b. 1. 1 3 cycles will minimize condensation

b. 1. g 6 cycles and consequently negligible
conductance degradation

Gas and water vapor pre-mixed- Will significantly increase

insufficient gas circulation thermal conductance

b. Z. 1 3 cycles

b. 2. Z 6 cycles

c) Decontamination gas (ethylene oxide) at ZS0°F

I) 3 cycles

Z) 6 cycles

d) Effect of condensation

Z. Blanket depr es surization

3. Air conditioning 40 to 60°F

Will affect the structural

integrity of the Mylar and

thus may degrade conduct-
ance

Will remove aluminum

deposit from Mylar film;

degrade design conductance

May cause tearing of
blanket if blankets are in-

sufficiently vented; there-

fore, degrade conductance;
also conductance will

increase if have trapped gas
within blanket

If have good circulation,
will not affect conductance

_qdeal thermal conductance does not incorporate effects of

insulation design and mission parameters

Costlier than if no

gas circulation

3-Z5



T_$YSTEMS

Table 3-3. Summary, Design Parameters (Continued)

Effect on

Parameter Ideal* Thermal Cost

Conductance

B.

4. Blanket vibration, 5 g maximum

5. Blanket quasistatic acceleration and

steady acceleration

6. Blanket boost acceleration

7. Blanket acoustic excitation

8. Shock load on blanket

9. Aerodynamic heating during boost

I0. Engine firing - plume and hot engine

11. Dry nitrogen purge

lZ. Dry air environment

Natural Environment

1. Micrometeoroid impingement

Z. Ambient air 40 to 90°F

3. Proton bombardment

4. Earth albedo and emission

5. Mars albedo and emission

6. Asteroids and solar particles

7. Ultraviolet exposure

8. Environment temperature variation and
extremes

No effect on conductance

if have good adhesion of

aluminum deposit to

Mylar film

May increase conductance

only during period of

application; increase is

a Z0 percent maximum

May cause detachment of

blanket from Velcro tape;

degrade conductance severely;

may require Dacron thread
and button attachments in

addition to Velcro.

No effect on conductance

for Mylar film greater than
1/4 rail

No effect on conductance

Shroud takes the load;

therefore, no conductance

degradation

Must expose only to insula-

ted engine; if so, no increase
in conductance

No effect if purge gas velo-

city is 50 ft/min or less

No effect on conductance

Will increase conductance

10 percent maximum

If relatively dry then no
effect

No significant effect on
conductance

No significant effect on
conductance

No effect

Will degrade insulation

conductance similar to

micrometcoroids

Will increase exterior

face sheet surface

absorptivity; no effect
on conductance

-400°F will make Mylar

stiff; exposure to +Z50°F and

then cool down will cause

Mylar shrinkage; however,

there is no significant

increase in design conduct-

ance. Changes in boundary

temperatures wilt alter

thermal conductance values.

*Ideal thermal conductance does not incorporate effects of
insulation design and mission parameters
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3.5. Z. 1 Preferred Insulation Selection

The following multilayer insulation constructions were

inve stigated:

1. Metal-coated Mylar

2. Aluminized fiberglas

3. Aluminized Teflon

4. Aluminum foil

5. Metal-coated Kapton (H-film)

6. Metal-coated dimpled Mylar

7. Uncoated Mylar film.

A metallic coating, usually gold or aluminum because of their

low emissivity, applied to one surface of each sheet of Mylar or Kapton

provides sufficient insulating capability. Aluminum oxidizes: the thin

layer does not appreciably affect the thermal properties of the insulation

as it is transparent to IR radiation. There is no significant oxidation of

the gold.

In selecting insulation, the compatibility with the natural and induced

environments of Voyager must be examined. During decontamination of

the spacecraft, the insulation is subjected to ETO gas. Mylar 65 H.S.

Dupont becomes brittle (Reference 3-11) when exposed. Teflon reacts

with the freon in the gas. Kapton reacts with ETO. These materials are

unsuitable. All of the materials are compatible with the temperature

extremes experienced by Voyager. Aluminum-foil insulation is undesir-

able because it is sensitive to the acoustic excitation loads (Reference

3-12) and it is difficult to fabricate and handle.

Both aluminized fiberglas and aluminized teflon are heavy com-

pared to Mylar or Kapton. Aluminum foil or aluminized Mylar can be

used with separators. Typical separators (i. e., net or posts) are fiber-

glas_ nylon, dacron, glass and paper. These are heavier than crinkled

metal-coated Mylar or Kapton.
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Dimplar blankets are composed of 1/4 mil (minimum thickness)

reflector sheets separated by 1/2 mil (minimum thickness) dimpled

sheets. The dimpled sheets are generally aluminized on both faces

in order to obtain low thermal conductance. This makes Dimplar

considerably heavier than crinkled Mylar.

Elimination of the spacers between aluminized Mylar sheets results

in maximum point contact thermal conductance between the sheets. This

negates the resistance capability of the insulation to radiant heat transfer

between inner and outer sheets. This type of multilayer insulation is not

ac c eptable.

Flat or crinkled, uncoated Mylar film is eliminated as an insulation

candidate because the emissivity of Mylar does not provide sufficient

thermal resistance to heat leakage by radiation through the insulation.

Based on preliminary comparisons, the following multilayer

insulations were selected for further investigation:

• Crinkled gold-coated Mylar

• Crinkled aluminized Mylar

• Aluminum foil with glass separators

• Aluminized Mylar with paper, dacron net, or

dexiglas s separators

• Dimplar.

The preferred insulation is the insulation with the required thermal

conductance and lowest weight. The required conductance is based on

the Voyager application where the insulation is required to have its

maximum performance. This condition occurs during Mars eclipse.

The thermal conductivity (0. 001 Btu/hr-ftZ-°F) is based on an interior

insulation temperature of +85°F and exterior insulation layer tempera-

ture of -315°F. For lower temperature differentials across the

insulation or for higher levels of insulation temperatures, the thermal

conductance will be increased.

Thermal conductance and associated weight of l-inch-thick

multilayer insulations are presented in Figures 3-10 through 3-15.
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ALUMI NIZED MYLAR WlTH DACRON NET SPACERS - Thermal conductance and weight.
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ALUMINIZED MYLAR WITH DEXIGLAS SPACERS - Thermal conductance and weight.
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DIMPLAR - Thermal conductanceand weight.
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These thermal conductance curves are best-fit curves obtained from

TRW tests and references 3-12, 3-13, and 3-14. A comparison of the curves

in the figures indicates that crinkled aluminized Mylar gives the best

thermal conductance for minimum weight. Table 3-4 presents a

comparison of the seven insulations for a thermal conductance of

0. 0052 Btu/in./hr-ftZ-°F. Crinkled aluminized Mylar requires

45 layers/inch and weighs 0.084 lb/ft 2. It weighs 45 percent less than

the next best insulation (crinkled gold-coated Mylar}.

Table 3-4. Comparison of Multilayer Insulation

Thermal Conductance

0. 005Z Btu-in./hr-ftZ-°F Layers/Inch Weight (lb/ft 2}

Crinkled aluminized Mylar 45 O. 084

Crinkled gold-coated Mylar 70 O. 154

Aluminum foil and glass 38 O. Z5

AluminizedMylar and 35 0.18

paper

Aluminized Mylar and
dacron net

91 0.45

Mylar aluminized two sides
and dexiglas s

40 O. 19

Dirnpla r 55 0. Z3

In addition, TRW experience with aluminized Mylar indicates

that it is more desirable. Aluminized Mylar is easier and less

expensive to fabricate. Gold adheres poorly to Mylar film. As

indicated in Figure 3-10, gold-coated crinkled Mylar has a thermal

conductance lZ percent higher than aluminum at the optimum layer

density. Although aluminum has a higher emissivity than gold by a

factor of 1.3, the thermal conductivity of gold exceeds that of aluminum

by a greater factor. The higher lateral heat leakage becomes more

significant than the increased thermal radiation resistance, and the

result is an increased overall thermal conductance for the gold-coated

Mylar. Gold-coated Mylar was considered as an alternative candidate
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only because there was concern that water condensation during ETO

decontamination might cause removal of aluminum deposit from its

Mylar film. TRW tests (Reference 3-15) indicate that aluminized Mylar

is not sensitive to humidity in the range required for decontamination.

The crinkled aluminized Mylar has a maximum insulating

capability for a specified weight. Based on the thermal conductances

and weight comparison, crinkled multilayer insulation is the insulation

for Voyager preferred by TRW.

3.5. Z. Z Crinkled Aluminized Mylar

The crinkled aluminized Mylar consists of a number of I/4 rail

Mylar sheets, aluminized on one side, crinkled, either mechanically or

by hand, and sandwiched between 3-rail one side aluminized Mylar face

sheets.

Crinkling acts as a separator and minimizes contact area. From

Figure 3-I0, the optimum layer density for crinkled aluminized Mylar

is 70 layers/inch. At higher layer densities, contact conductance

between sheets increases and thus provides shorts to the thermal

radiation insulating capability of the individual layers. This explains

the rise in thermal conductance (Figure 3-10) for layer densities higher

than 70 layers/inch. A comparison of the thermal energy transferred

by conduction and radiation through a typical multilayer insulation is

indicated in Figure 3-16. For 70 layers/inch or less the radiation

predominates, and above 70 layers/inch conduction is the primary heat

transfer mode.

Thermal conductance as a function of various insulation tempera-

tures is presented in Figure 3-17 for 70 layers of 1/4 rail aluminized

crinkled Mylar. Analysis to date indicates that during near-earth steady-

state conditions, the insulation on the base of the spacecraft reaches

temperatures of 246 and 90°F (Volume 3, Section 5) on exterior and

interior surfaces, respectively. For this condition (Figure 3-17)the

thermal conductance is 0.007 Btu/hr-ftZ-°F. This provides the desired

temperature control (as presented in Volume 3, Section 5) of the space-

craft for this phase of the Voyager mission.
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I) IDEAL THERMAL CONDUCTANCE:

EFFECTS OF FABRICATION, ATTACHMENT AND
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2) I/4 MIL MYLAR, ALUMINIZED ONE SIDE

3) STEADY STATE VACUUM

4) I INCH THICK BLANKET INSULATION

5) 70 LAY ERS/INCH

Figure 3-17

CRINKLEDALUMINIZED MYLAR- Thermal conductance for various interior and exterior surface temperatures.

The insulation is designed to vent trapped gas during launch in

accordance with depressurization schedules for Voyager (Figure 3-18).

The increase in thermal conductance for various interstitial gas

pressures is illustrated in Figure 3-19. To reduce the time lag in

reaching the final value of thermal conductance after boost, the insula-

tion includes vent holes.

Before the layers of insulation are formed into blankets, they are

perforated to provide venting during launch and to allow decontamination

gases to penetrate the insulation. An analysis of the venting require-

ments indicates that I/8-inch-diameter perforations at 6-inch centers

satisfy the design requirements. Each blanket layer is perforated

separately, and the hole patterns are staggered when the blanket is

layed up.

3-33



_tWs yST£M$

14

--12

0

< 6

_1/36 IN. DIA

_. _ SDIA"

I/8 IN. DIA.
HOLES

20 40 60 80 I O0 120 140

TIME FROM LAUNCH, SEC

CONDITIONS:

1) PERFORATIONS ON 6 INCH CENTERS.

2) HOLES ARE STAGGERED.

3) 1 INCH THICK, 70 LAYERS/INCH

4) AVERAGE TEMPERATURE: 70°F.

Figure 3-18
DEPRESSURIZATIONOF INSULATIONBLANKETSWITH VARIOUS SIZE VENTHOLES.

1000
o

i

i

_ I00

Z

Z

8

1

10 -5

i

!

II I II I II

II !ll I II

I I
---I-I

,_rl II

,/ IIz I
,'r 1 I

II

/ III I II
/" I1! 1 II

,rP" I
10-4 10 -3 10 -2 I0 -I

PRESSURE, PSIA

Figure 3-19

CRINKLEDALUMINIZEDMYLAR- Thermal conductance vs. interstitial gas pressure.

CONDITIONS:

I) IDEAL THERMAL CONDUCTANCE:

EFFECTS OF FABRICATION, ATTACHMENT AND
MISSION PARAMETERS NOT INCLUDED

2) I/4 MIL FLAT MYLAR LAYERS ALUMINIZED ON ONE SIDE

3) STEADY STATE VACUUM

4) 1 INCH THICK INSULATION BLANKET

5) 70 LAYERS I INCH

6) HOT BOUNDARY TEMPERATURE:85°F

7) COLD BOUNDARY TEMPERATURE:-315°F

After the sheets are perforated, the blankets are layed up and

the sheets of blanket are fastened together at the edges by tape caps and

ultrasonic welds (see Section 3.5.2.5). The blanket layers are so

arranged that the aluminum side faces the spacecraft. This provides

exposure of the warm interior to a low-emissivity surface. The welding
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provides good contact between layers

in point-sized areas only. The tape

caps help to contain the 70 layers with-

in the desired i-inch thickness. The

additional conductance path provided

by the tape caps between the face

sheets does not significantly degrade

blanket performance. Ultrasonic welding fuses the Mylar sheets locally,

but the effect on blanket performance is not significant.

Figure 3-20 indicates the variation of the specific heat of crinkled

aluminized Mylar with temperature. The specific heat of crinkled

aluminized Mylar does not differ significantly from that of other multi-

lyaer insulation. Linear thermal expansion or contraction of alumini-

zed Mylar is shown in Figure 3-21. No significant thermal expansion

or contraction will occur in the blanket layer over the operating tempera-

ture range.

The thermal conductance curve for aluminized crinkled Mylar

represents ideal conditions and therefore does not incorporate such

effects as attachment, packing, and handling that exist during the

Voyager application. A typical thermal conductance curve that includes

these effects is presented in Figure 3-22. For 70 layer/inch Mylar,

thermal conductance is increased more than 100 percent. This is

considered a typical degradation for multilayer radiation shields applied

to an actual spacecraft. The curve indicates that, even with this
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Figure 3-22

CRINKLED ALUMINIZED MYLAR - Thermal conductance with velcro tape attachment.

degradation, the 70 layer/inch design satisfies the requirement for a

thermal conductance of 0. 001 Btu/hr-ftZ-°F.

It is felt that a l-inch-thick layer aluminized Mylar blanket with

a density of 70 layers per inch is a conservative selection. If thermal

analysis and tests indicate that a higher thermal conductance than

0. 001 Btu/hr-ftZ-°F is allowed, then blanket thickness can be reduced

accordingly to save weight.

3.5. Z. 3 Methods of Attachment

The ground rules for selecting an attachment method are that it be

simple and removable. Degradation of thermal performance should be

minimized. Table 3-5 presents a summary of attachment parameters.

Attachment methods (References 3-11, 3-16 and 3-17) which are

commonly used are:

a) Permanent type attachments

• Welding

• Bonding with epoxy cement.

b) Attachments where limited access is required include:

• 3M 830 tape

• EE 6600 tape
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Silver tape

Mechanical stitching

Me chanical stapling

Nylon stud with buttons

Dacron rod and button

Glass or dacron fiber threads and buttons.

c) Attachments, where repeated access is required, include:

• Piano hinge (developed at TRW)

• Metallic snaps

• American Velcro tape.

TRW has employed many of these materials and techniques in

spacecraft applications and has developed a piano hinge which can be

used for joining adjacent blankets. This is formed by overlapping the

face sheets, cutting flaps in the overlapped area, and wrapping the flaps

around a thin, solid Mylar rod. The rod is taped to the spacecraft at

numerous points. The Mylar rod and tape provide a significant increase

in thermal conductance.

Ultrasonic welding can be used in fabrication of the blanket and

also to attach the blanket to the spacecraft. If the blanket is welded to

the spacecraft, it is naturally damaged by removal. Epoxy bonding is

another possible attachment method but it is also permanent. For this

reason, neither of these methods is feasible for the Voyager application.

Aluminized tape such as 3M 850 or EE 6600 provides a simple,

light-weight method of attachment. The tapes, once applied, adhere

to both the insulation and the spacecraft surface through a wide range

of temperatures. However, if the tapes are allowed to remain attached

for over 24 hours, it is very difficult to remove them. Removal in most

cases would result in damage to the insulation blanket.

Mechanical stitching or stapling requires a special machine and is

limited to areas where access is readily available. In this concept, the

blanket would be stapled or stitched directly to the spacecraft.
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Use of a nylon rod with a button on the end provides a firm

attachment. However, the heat leak through the rod would significantly

degrade the overall thermal performance of the insulation. Glass or

dacron thread has often been used with buttons to attach insulation

blankets. The system consists of passing the thread through the

insulation blanket and securing a button on the outside of the insulation.

The heat leak is greatly reduced by using the thread instead of the

nylon rod. This procedure, however, does not provide for easy removal

of the insulation blankets.

Metallic snaps and Velcro tape are simple designs and do not

appreciably increase thermal conductance. Both of these fastening

techniques provide contact only between the innermost blanket layer and

the structure. Metallic snaps tend to tear crinkled Mylar blankets,

however, during removal of the blankets.

Velcro tape consists of two mating sections. One section consists

of a thin nap attached to a backing tape which can be applied to a surface

by activating the mastic on the tape with a solvent. The mating section

iS composed of many small plastic filaments so formed as to make

hooks. These hooks are set in a backing material similar to the backing

for the nap. The hooks attach to the nap by pressing the mating sections

together. Separation is not attained unless a force of 0.5 pounds/inch

is applied in shear as well as in tension. Two disadvantages of Velcro

tape should be noted. One, it has a density of 0. 191 pound/foot which

is relatively heavier than other attachment materials. Two, it tends

to cause removal of the metal coat on the Mylar film in the local area

of the attachment if tape contact is on the metal side. In spite of these

minor liabilities, however, Velcro tape is selected as the preferred

attachment for Voyager.

3.5.2.4 Insulation Closeouts

The multilayer blankets must be joined to minimize heat leak

at the corners of the spacecraft. Three closeout procedures are

presented.
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Blanket Overlap - Two Blankets. Two blankets

are overlapped at a corner or bend as indicated

in Figure 3-23. Overlap distance is set at a

Z-inch minimum. The advantage in this attach-

ment is that it permits maximum edge venting
during depressurization. Fewer layer perfor-
ations are required. Bending of the blankets,
however, causes significant blanket compression
and degradation of thermal performance.

Blanket Overlap - Staggered Buildup. Several
thinner blankets are stacked 1 inch thick and

overlapped at the corner or bend as shown in
Figure 3-24. No specific overlap distance is
set. The advantage of this attachment is that the
compression effect is minimized. The

disadvantages are: minimal edge venting and
increased number of blankets.

Two Blankets and a Blanket Strip. Two blankets
are attached as close to each other as possible
at a corner and a 1-inch-thick strip of Z-inch
minimum width is attached over the two blankets

to form the corner (Figure 3-Z5). The advantages
are: no bending of the blankets, simplicity, and
no degradation of thermal performance. Dis-

advantages are: impaired edge venting and
increase in number of components (closeout strips).

VELCRO TAPE

VELCRO
1 INCH THICK BLANKETS

STRUCTURE

VELCRO TAPE /

Figu re 3-23

INSULATION CORNER CLOSEOUT - Overlapped blankets

STRUCTURE

L

iii_i!iiiiiii_i
ii_!_iii__

!!iii_i

Figure 3-24

INSULATION CORNER CLOSEOUT - Staggered blankets

i!_:ii
_!iii_i_ iiiiI

i_ i¸
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APPENDAGE

Figure3-26
APPENDAGEINSULATION.
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L2o
i \

I INCH BLANKET

70 LAYERS CRINKLED

ALUMINIZED MYLAR

The last of these three techniques is selected as the preferred

attachment procedure for Voyager insulation. This procedure satisfies

the design requirements of minimum heat leaks at blanket joints as

well as design simplicity.

Thermal coupling by conduction from the spacecraft interior

through a strut or cable and. subsequent radiation to the cold space

environment negates the effectiveness of the Voyager insulation.

Essentially, a bare strut or cable acts as a radiating fin. Therefore,

insulation is provided at each strut or cable protruding from the

spacecraft through the 1-inch insulation blanket. A design for such a

penetration is shown in Figure 3-26.

3.5. Z. 5 Application to Recommended Spacecraft

The preferred insulation design as applied to the recommended

spacecraft is indicated in Figures 3-Z7 and 3-Z8. Multilayer crinkled

aluminized Mylar blankets are attached to the spacecraft exterior

surfaces covering the sides, top, and bottom. One blanket is provided

for each side. It covers from the top of the equipment module to the

bottom of the propulsion module. Cutouts are to be provided for louvers,

appendages, and the engine nozzle assembly. In addition, the insulation
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design must accommodate protruding struts that support exterior

equipment, solar array support structure, and cabling. With the

present design, at least 40 struts are used to support exterior equipment

and Z3 support struts as associated with the solar array. Also, a

conical insulation contour is used on the top where the capsule is

inserted. In addition to the main spacecraft insulation, at least six

multilayer insulation blankets will be required for the interior of the

planetary scan platform. The proposed blankets and their typical sizes

and contours are presented in Figures 3-Z7 and 3-28.

The design procedure for insulating struts or cables is that a

cutout in the main blanket is allowed for the strut or cable. Thirty

crinkled metallized Mylar layers are interleaved around the cable or

strut. 3M 850 tape, which provides a strong tape bond but is removable,

is used for attachment. This insulation scheme must be reconstructed

around each protrusion after each removal. It has been shown in

thermal tests that thermal performance with this protrusion insulation

is not significantly different from that for a blanket with no protrusions.

Damage caused by micrometeoroids of high kinetic energy can

reduce the effectiveness of crinkled aluminized Mylar insulation. The

damage to the crinkled aluminized Mylar blankets will be as extensive

for other multilayer radiation shields. The insulation is generally

punctured or torn at particle impact. A laboratory simulation of

micrometeoroid bombardment was conducted at TRW utilizing the

Z-million-volt Van de Graaff accelerator. Particles were charged by

electronic techniques for measurement of particle velocity and mass.

It was determined that two percent of an exposed surface would be

damaged by micrometeoroid impact per year, assuming a density of

8 gms/cc. It is estimated that a blanket thermal conductance degradation

not in excess of I0 percent would result. If it is found in later develop-

ment tests that the damage is more extensive, then the blankets will

have to be attached behind a micrometeoroid bumper. A micrometeoroid

would sublime after impact with the bumper. The insulation would be

attached at sufficient distances from the bumper so that the vaporized
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debris would lose sufficient momentum by expansion to cause insignifi-

cant damage to the insulation. If a bumper is required, then care must

be taken that the bumper does not reduce insulation effectiveness.

Voyager insulation will be subjected to accelerations as high as

5.6 g at SI-C stage burnout. Since the insulation is a lightweight type,

the inertial load produced by an acceleration of 5.6 g represents a mild

environment for the insulation blanket and the Velcro attachments.

Therefore, the crinkled Mylar insulation blanket will maintain its

structural integrity during quasi-static acceleration. Also, the

insulation will not be damaged by constant accelerations of 20 g maximum

for 5 minutes. However, the insulation thermal conductance increases

during acceleration periods. This effect is indicated in Figure 3-Z9.

The degradation in thermal conductance at a 16 g axial acceleration is

Z5 percent. This is explained by the fact that acceleration changes tend

to cause compacting of some of the insulation blankets.
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CONDITIONS:

I) EFFECTS OF FABRICATION, ATTACHMENT, AND OTHER

MISSION PARAMETERS ARE MINIMIZED

2) 70 LAYERS I/4 MIL MYLAR BOUNDED BY 3 MIL
FLAT MYLAR SHEETS

3) ALL LAYERS AND SHEETS ALUMINIZED ON ONE SIDE

4) HOT BOUNDARY TEMPERATURE: 85°F

5) COLD BOUNDARY TEMPERATURE: -315°F

6) ! INCH THICK INSULATION BLANKET

Figure3-29

EFFECTOFACCELERATIONLOADINGONTHERMALCONnUCTANCE- AluminizedMylar.

The crinkled aluminized Mylar blanket is not affected by vibration

loads at 150 Hz, 3 g amplitude maximum. Acoustic excitation at 155 db

maximum for 3 minutes does not damage a crinkled aluminized Mylar

blanket as long as there is good adhesion between the aluminum deposit

and its Mylar film. It has been noted that acoustic excitation damages

an aluminized Mylar sheet less than I/4 rail thick. However, the
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blanket is provided with 3 rail aluminized Mylar face sheets and thus

no problems are anticipated. For the expected vibration and acoustic

loading, a theoretical analysis of these effects on insulation blanket

thermal conductance is difficult to conduct.

Shock loading will be imposed on the insulation during fairing

removal and spacecraft separation. These loads occur at very high

frequencies where an insulation of the multilayer type does not respond.

Therefore, no damage to the crinkled aluminized Mylar blanket is

expected.

Crinkled aluminized Mylar insulation is sensitive to aerodynamic

heating during the boost phase, because the maximum operating

temperature of Mylar is 300°F. Shielding of the insulation is provided

by the fairing which is subjected to aerodynamic heating load.

Aluminized Mylar cannot maintain its structural integrity if heat

inputs from the hot engine and plume result in blanket temperatures

in excess of +300°F. The area of particular concern is the aft end of

the spacecraft. Therefore, the engine nozzle is provided with high-

temperature insulation consisting of blankets of alternate layers of

aluminum foil and fiberglas paper. Analysis of the effects of engine

firing in combination with solar loading indicate that, with the present

insulation, the aluminized Mylar insulation blankets will not exceed

Z50°F. Application and subsequent decrease of such a temperature

level will result in some shrinkage of the Mylar film.

Exposure of aluminized Mylar to ambient air for extended periods

will cause oxidation of the aluminum deposit. Tests indicate that even

for oxygen concentration as high as Z.55 percent by volume, the

resultant increase in emissivity is negligible.

Proton bombardment, in densities of I016 protons/cm Z blanket

will cause insignificant damage. The solar absorptivity of the aluminum

will be increased five percent upon direct exposure.

Ultraviolet exposure of the aluminum side of the insulation layer

will cause an increase of solar absorptivity from 0. Z4 to 0.32 after
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I000 hours of exposure. Only the outer layer is affected, and thus

overall insulation thermal conductance is not altered significantly.

The analysis indicated that the insulation maximum and minimum

temperatures for the Voyager mission will be +250 and -300°F,

respectively. The insulation is designed to operate between such

temperature extremes as -400 to +300°F. At the lower extreme the

Mylar becomes slightly stiff, but structural integrity is not impaired.

As low temperatures are attained, contraction differences between the

aluminum deposit and Mylar substrate are not significant.

The selection of insulation design and attachment as well as effects

of insulation design parameters must be substantiated by additional

development tests. In assessing effects of parameters it must be noted

that the thermal conductance in a crinkled aluminized Mylar insulation

blanket is highly anisotropic. This is illustrated in Figure 3-30 where

it shows that large temperature differences exist for lateral points on

the individual layers. Therefore, the thermal conductance is based on

average insulation boundary temperatures, and differences between

average and maximum or between average and minimum should be noted.
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3.5.3 Fabrication Parameters

The basic fabrication parameters for the insulation are quality

of materials, handling procedure, and fabrication techniques required.

Table 3-6 presents a summary of the fabrication parameters.

3.5.3. 1 Materials

The aluminized Mylar is obtained per TRW Specification MT 3-14A.

Strict quality control is specified at the start of sheet fabrication and

aluminum deposition. Deep scratching of the aluminized Mylar films

that form a blanket generally results in an increase in overall aluminum

emissivity and consequent increase in thermal conductance. However,

it has been found that minute scratches in the metal coating tend to

increase lateral resistance to heat transfer by conduction. This

decreases thermal conduction through the aluminum deposit between

layer contact points. Furthermore, resistance measurement of an

aluminized Mylar sheet with such minute scratches indicates that the

resistance increases significantly as compared with an identical sheet

without the minute scratches. Further evaluation of this phenomenon

is warranted.

The effect of aluminum deposit thickness on layer lateral thermal

conductance is presented in Figure 3-31, and its effect on aluminum

emissivity is indicated in Figure 3-32. Applying a thick deposit to the

Mylar film offers low emissivity and decreases thermal conductance.

However, the thick aluminum deposit provides greater lateral thermal

conductance and consequently increases overall thermal conductance.

A thin aluminum coat on the Mylar film gives high aluminum emissivity,

which tends to increase overall thermal conductance; but the thicker

aluminum coat decreases lateral thermal conductance which results in

reduction of the insulation thermal conductance. It is concluded that

the optimum aluminum deposit thickness is 500 angstroms.

For a 500-angstrom aluminum deposit on a I/4 rail Mylar film,

the dominant control of lateral thermal conductance resides in the

aluminum deposit by a factor of 3 to I. This is explained by the fact

that, although there is considerable cross-sectional area of Mylar,
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the thermal conductivity of the aluminum exceeds that of the Mylar by

a greater factor. Aluminum thickness deviations have a significant

effect on insulation thermal conductance. This thickness can be

checked directly during aluminum deposition since a 500 angstrom

thickness provides a direct current electrical resistance of Z ohms per

square through the aluminum. The measurement cannot be made after

the material is crinkled because crinkling causes mechanical interruption

of the coating with corresponding indeterminate changes in electrical

resistance.

The quality of the aluminum deposit on Mylar film must be

carefully controlled from the time deposition takes place. First, it

is required that aluminum deposit on the base film be 99.99 percent

pure. The insulation should be observed at frequent intervals to

ensure that the deposit appears visually uniform, has a bright silver

color, and is free of yellow discoloration when viewed in white reflected

light in such a manner as to preclude environmental influences. Just

before crinkling, a film check by special lights should be made to

ensure that the aluminum side is a bright, specular surface. After

crinkling is completed, the surface condition of the coating is difficult to

appraise and impossible to measure with present techniques. Develop-

ment of new methods is required to assess the insulation in its final

form.

Adhesion of the aluminum deposit to its Mylar substrate is an

important parameter. Poor adhesion can result in significant loss of

aluminum with a consequent increase in thermal radiation energy transfer

between insulation interior and exterior. A Z50 3M tape test is

performed to check adhesion and consists of applying the tape to a 4-inch

square of coated surface and removing the tape in one quick motion.

Visual inspection of the tape and tested area is made to note any

evidence of coating removal. Adhesion failure on 5 percent of the

entire surface or small points of poor adhesion distributed widely over

the sample should be cause for rejection.
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3.5.3. Z Fabrication Techniques

Once the sheets are available the blankets are constructed by

a lamination process. This procedure requires exact cutting and the

use of specialized hand tools and templates. This layup technique

prevents compacting of layers and inclusion of contaminants. Blankets

will be cleaned in vacuum prior to installation and plastic gloves are

to be worn at all times to reduce contamination by skin acids and other

contaminants. Blankets will be stored in clear plastic bags to minimize

effects of environment and handling.

Packing of the insulation or otherwise applying a compressive load

to the blanket results in a significant degradation of thermal conductance

because of increased solid conduction through interlayer contacts. The

quantitative effect is indicated in Figure 3-33 (Reference 3-17) in terms

of thermal conductance and heat flux ratio. The greatest increase in

thermal conductance occurs during the initial load application. Further

increases in load result in smaller changes in insulation effectiveness.

Figure 3-33 indicates that thermal conductance varies directly with the

load taken to the two-thirds power. The closeouts between blankets greatly

affect thermal performance. Increased heat flux, as a result of overlapping

blanket layers at a joint, is shown in Figure 3-34 (Reference 3-18). The

results are specifically for 30 layers of Dimplar interleaved at a joint

on a cryogenic tank. The curves indicate that, for a Z-inch overlap,

the increased heat flux or increase in thermal conductance is Z5 percent.

This increase is due to edge effects. Edges of inner layers are exposed

to the environment or to cold layers in adjacent blankets. With the

proposed attachment scheme of two blankets, separated by a minute

gap and covered by a multilayer blanket strip, it is felt that degradation

will be considerably less than Z5 percent. The closeout in combination

with the blankets provides a total of 140 blanket layers, two inches thick

at the closeout. The effect of blanket compaction is minimized in this

method. It is not dependent on the fabrication procedure. Care should

be taken in attaching the blanket to the spacecraft and the closeou£ to

the blankets to minimize the compaction.
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EFFECTOF OVERLAP LENGTHON HEAT LEAK - Multilayer insulation.

The effects of gaps between insulation blankets and/or the closeouts

on thermal conductance is presented in Figure 3-35. For a gap width

as low as 1/16 inch, conductance increases 190 percent, and for a gap

width of I/4 inch, conductance increases 460 percent. Heat transfer

through the gap consists of radiation directly through the gap and

radiation from each layer through the gap. All gaps are covered with a

closeout, and the fabrication technique must assure no gap between

blankets or between blankets and closeouts exposed to space.
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4. PLUME HEATING

4.1 GENERAL DESCRIPTION

4. 1. 1 Scope of Work

This engineering task investigated: 1) engine plume heating and areas

of impingement of the Voyager spacecraft from the LM Descent Engine;

2) nozzle radiation heating to spacecraft from the LM Descent Engine noz-

zle extension; and 3) effect of engine plume heating and nozzle radiation

heating on critical spacecraft components.

4.1.2 Summary

The temperature and pressure gas dynamics was determined for

the LM Descent Engine. A one-phase, inviscid flow field was developed

to depictthe liquid propellant engine plume. Determination of the discern-

ible plume (Section 4.2.1)indicated that there are no areas of impingement

either on the spacecraft or the external equipment from the firing of the

LM Descent Engine. The chemical composition of the plume (Section

4.2.2) was determined accounting for N2, CO, CO2, and H20 (vapor). The

total incident radiation heat flux from the engine plume was calculated to

each of the critical spacecraft components by the line-of-sight method.

Based on the nozzle extension temperatures generated by the engine

firing program and shape factors calculated by the method in Refer-

ence 4-1, the heat fluxes from the nozzle to the critical spacecraft com-

ponents were calculated. During the analysis of Task C it was found

necessary to use an ablative nozzle extension to keep the solar arrays on

the base below 300°F. During Task D it was found that an insulated

nozzle extension using Fiberfrax with low emittance metallic coating

would keep the solar arrays below 300°F. The insulated nozzle exten-

sion weighs much less than the ablative nozzle.

The effect of engine plume heating and nozzle radiation heating when

coupled with the normal spacecraft environments during engine firing is

presented in Section 4.5. There is no deleterious effect on the space-

craft or any of its components as a result of engine firing.
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4.2 DEFINITION OF PLUME CHARACTERISTICS

4.2. t Temperature and Pressure Gas Dynamics

Thermal radiation from the LM Descent Engine plume to the space-

craft surfaces could affect the performance of those surfaces. Figure 4-t

shows the relationship between the critical spacecraft components and the

engine. As a result of the possible deleterious effects of the plume, it

is important that an accurate prediction of the thermal environment dur-

ing the engine firing be made. For a liquid propellant motor (i. e. , LM

Descent Engine), the gaseous plume is the sole radiator. In this case,

the radiation is a function of temperature, pressure, and chemical com-

position of the plume.

| H,GH GA, N ANTENNA < _ _"X

2 ,ASE-MOUNTED_O_'_ARRAY ",,,, / _ "_.
3 BASE-MOUNTED INSULATION _ _ _._ _ /

,, ANNO'.USSOLARA ' AYS/ V'! "-./

Figure 4-1

VOYAGERSPACECRAFT- Critical componentssubjected to engine plumeheating.

To initiate the study, the plume flow field was generated using the

TRW computer program, "Jet Wake Study Program. " The flow field for

the gaseous plume was determined using the pertinent propulsion data in

Table 4-t. This program calculates the lines of constant Mach and de-

fines the discernible plume for a one-phase (ideal gas) inviscid flow field

(Figure 4-2). The flow field is used with the composition (Section 4.2.2)

to determine the plume heating (Section 4.3).

An ideal gas analysis was used in this study. For the high-temper-

ature high-pressure region (chamber), very large kinetic energies

exist and the gases are in an equilibrium state. When temperature and
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Table 4-t. Pertinent Propulsion Data

Item

Chamber pressure

Chamber temperature

Gas constant

Specific heat ratio

Ambient pres sure

Nozzle exit radius

Nozzle exit Mach number

Nozzle lip angle

Units

(psia)

(°R)

(ft/°F)

(¥)

(psia)

(ft)

(M)

(e)

First Interplanetary
Trajectory Correction

18

5501

75.1

1.24

O. 695 x I0-

2.38

4.18

11

Mars
Insertion

i00

5501

75.1

1.24

O. 695 x I0-

2.38

4.18

Ii

5

|10

100

9O

8O

7O

4¢

/
//

NOZZLE I_o _I__'_
- I 0 0 I 0 20 30 40 50 60 70 80 90 100

AXIAL DISTANCE, X (FT)

/
//

i / ////

Figure 4-2'

PLUME FLOW FIELD - Constant mach number lines.
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pressure drop (somewhere in the nozzle), the gas shifts to a nonequili-

brium state and the real gas effects become significant. When tempera-

ture and pressure drop to very low values (somewhere in the divergent

section of the nozzle or outside of the nozzle), the kinetic energy is al-

most zero and no critical reactions can take place. Consequently, ideal

gas assumptions are valid in this region. For this particular analysis

the only area we are concerned with is the plume as it forms outside the

nozzle.

4.2.2 Plume Composition

The plume chemical composition was determined using the TRW

computer program, "Rocket Chemistry Program. " This program accounts

for N 2, CO, CO 2, and H20 (vapor). It ignores all free carbon. From the

LM Descent engine test presently in progress, TRW has motion pictures

taken through the engine plume which show that it is very clear and that

very little free carbon exists in the plume. In the analysis only CO, CO2,

andH20 (vapor) were considered as radiation sources. The N 2 was ne-

glected because of its very low emittance. Table 4-2 gives the chemical

composition of the plume at nozzle exit.

Table 4-2. Plume Composition

Constituent Mole Fraction Radiation Source

N 2

CO

CO 2

H20 (Vapor)

0. 497

0. 078

0. 053

0. 372

1. 000

No

Yes

Yes

Yes

4.3 PLUME RADIATION HEATING

To determine the radiant heat flux incident to a given surface point,

the plume is first divided into a number of small segments with view planes

emanating from the surface point to which the heat flux is to be calculated.

The heat flux from each of these segments is then computed, and by sum-

ming up the contributions from all the segments, the total heat flux incident
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to the surface point is obtained. In computing the incident heat fluxes from

the individual segments, a mean grey body emissive power was com-

puted. Figure 4-3 shows an example of the method of calculation.
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FIGURE4-3

PLUMEHEATINGEFFECT- Typicalcalculation.

For the prediction of gaseous plume radiation, the following com-

puting technique is used. Since total heat flux is being calculated, then

the emissivity values for individual species are determined from Hottel's

emissivity data as functions of temperature and the product of partial pres-

sure and beam length. These emissivity values are combined with the

black body emissive power and tke shape factor for each individual seg-

ment to determine the heat flux from that segment.

4.4 NOZZLE RADIATION HEATING

The nozzle radiation heating in conjunction with the engine plume

heating and normal solar heating posed the potential problem of over-

heating critical spacecraft components during the engine firing. The
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maxiurnurn heat flux occurs during first interplanetary trajectory cor-

rection. The next highest heat flux occurs during the Mars orbit insertion.

Previous studies have shown that a radiation-cooled nozzle exhibits ther-

mally destructive effects upon base-mounted solar arrays. The current

design of the LM Descent engine employs a radiation-cooled extension

For the Voyager application the heat radiation from the nozzle extension

must be limited due to the proximity of the solar arrays. During Task C,

an ablative nozzle extension was proposed. This would limit radiation

heating to the base-mounted solar arrays, but its weight is prohibitive.

During Task D an insulated nozzle extension concept was studied and

found to be effective in limiting the heat radiation. The weight of the in-

sulated nozzle extension is considerably less than that of the ablative noz-

zle extension. The present nozzle extension uses Fiberfrax insulation

with the low-emittance (_ = 0.2) metallic coating.

Near-earth and near-Mars steady state temperatures were used as

the initial temperature for the first interplanetary trajectory correction

and the Mars orbit insertion, respectively. The extremely high values

obtained near-earth steady state are especially important from the solar

array standpoint since this, coupled with the high heat flux due to engine

firing, tend to cause the solar arrays to experience high temperature

(300°F). The near-Mars steady state temperatures, coupled with the

engine firing for the Mars orbit insertion, cause the solar arrays to reach

high temperature (|95°F), but are not as critical since these are within

the temperature limits of the solar arrays.

The nozzle extension radiation was considered to the following areas:

I) high-gain antenna, Z) base-mounted solar arrays, 3) base insulation,

4) solar arrays on the annulus, and 5) planetary scan platform. The solar

panels and nozzle extension have emissivities of 0.8Z and 0.2., respec-

tively. For the thermal radiation from the nozzle to the critical space-

craft components, shape factors were determined analytically. Curves

of component temperatures versus engine firing time during the first in-

terplanetary trajectory correction and the Mars orbit insertion are pre-

sented in Figure 4-4. These temperatures, combined with the shape

factors between the nozzle and the spacecraft components, yield the heat
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flux for the critical spacecraft components. Table 4-3 indicates the max-

imum radiation heat flux each of the critical spacecraft components re-

ceives from the nozzle extension.

Table 4-3. The Base-Mounted Solar Array, Base In-

sulation, and High-Gain Antenna Radiant
Heat Flux. *

Description

Base-mounted solar array

Bas e insulation

High- gain antenna

Near -Earth

Heat Flux Z
Btu/s ec-ft

0. 001

0. 003

0.00i

Near-Mars

Heat Flux
Btu/s ec-ft 2

o. o26

o. oo6

0. 003

* The base-mounted solar array, base insulation, and high-

gain antenna receive a radiant heat flux from the nozzle ex-

tension during engine firing.

4.5 THERMAL EFFECT OF PLUME HEATING ON SPACECRAFT AND

EXTERNAL EQUIPMENT

A thermal analysis has been performed to determine the effect of

engine plume heating on critical spacecraft components. Short-term

temperature excursions associated with engine firing are an important
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area of concern. The two firings which produce maximum temperature

excursions are the first interplanetary correction and the Mars orbit

insertion.

Results from the steady state, near-earth and steady state, near-

Mars analyses are taken as the initial temperatures for the present anal-

ysis. The radiant plume energy incident upon the spacecraft during en-

gine firing was determined by the total radiant energy method. A detailed

description of the study performed to determine the radiant heat fluxes

incident to critical components of the spacecraft from the engine plume

is presented in Section 4.3. The critical spacecraft components receiving

radiant energy from the engine plume are as follows: annular solar array,

base-mounted solar array, base insulation, planetary scan platform and

high- gain ant enna.

The first interplanetary trajectory correction is an upper bound

hot condition near-earth. All of the critical areas receive a solar heat

flux of 442 Btu in addition to radiant energy from the engine plume
hr-ft 2

and nozzle (nozzle radiation heating is duscussed in Section 4.4).

The results as shown in Figure 4-5 provide data for the 380 second

engine firing as well as soakback after firing. The results of the

analysis indicate that all of the critical components, with the exception

of the base mounted solar array, are well within their respective tem-

perature limits. The near-earth, steady-state temperature of the base

mounted solar array is only a few degrees under its 248°F temperature

limit. Therefore, during engine firing the heat flux received from the

engine plume causes a short duration temperature excursion to 300°F.

Although the upper temperature limit is 248°F, temperatures to 300°F

have been tested in the course of the Vela satellite program, demon-

strating that the structural integrity of the array can be maintained if

proper aluminum venting and mounting structure expansion require-

ments are implemented. The near-earth, steady-state temperatures

of the other critical components are well below their upper limits;

therefore, the temperature excursions experienced during firing do

not constitute a problem.
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MARSORBIT INSERTIONTEMPERATURESdo not exceedthose of first

trajectory correction burn in spite of longer burn time during orbit
insertion. This is clueto lower solar flux near Mars.

During Mars orbit insertion the critical areas discussed above
Btu

receive a solar flux of 159 _ and, as in the case of the first inter-

planetary firing, they also receive incident energy from the engine

plume and nozzle. As is shown in Figure 4-6, these areas experience

a temporary temperature excursion during the 380 second engine firing.

Because of the lower near-Mars, steady-state temperatures, the

temperature rises during Mars orbit insertion engine firing are well

within the allowable temperature range.

4.6 CONCLUSION

The effect of the engine plume and the nozzle radiation combined

with the spacecraft environment during the engine firings does not

cause any deleterious effects on the spacecraft or its components.

There are no areas on the spacecraft or its external equipment where

the engine plume impinges. All the spacecraft critical components

are within their allowable temperature limits. The solar arrays on

the base of the spacecraft reach 300°F for a short period of time

during the first interplanetary trajectory correction, but this is not

injurious to the array.
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APPENDIX A

SHROUD VENTING ANALYSIS

i. INTRODUCTION AND GUIDELINES

An ascent venting analysis has been performed on the Voyager Space-

craft shroud configuration. The size and location of all the vents required

to ensure the adequate venting of each of the two Voyager capsules, the two

planetary Vehicle compartments, and all the shroud interior compartments

during the ascent portion of the trajectory have been determined.

The Voyager launch vehicle configuration upon which this analysis is

based appears in Figure A-i. The detailed shroud configuration used in

this analysis is shown in Figure A-2.

Prior to launch there will be an ETO purge of the planetary vehicle

compartments followed by a drying N Z purge until the ETO mixture has

been completely dispelled. At the completion of this purge, a 0.5 psi N 2

overpressure in each planetary vehicle compartment and a 3.5 psi N Z over-

pressure in each of the capsules will be maintained. The vent concept for

this study is controlled venting of each capsule, controlled venting of each

planetary vehicle compartment, and uncontrolled venting from each shroud

compartment to the atmosphere.

The ascent trajectory parameters used in the present analysis are

in Figures A-3 and A-4. The maximum value of the angle of attack enve-

lope during ascent, induced by winds, is a = 7-1/2 degrees.

A literature survey was made to find test data on a biconic cylindri-

cal configuration geometrically similar to the shroud. Reference A-1 con-

tains pressure data for the Machnumber range 0-i.i8 for such ageometric

shape. Pressure coefficient data for the Voyager shroud configuration is

presented in Figures A-5 through A-i3 for the entire Mach number range

of interest. Pressure coefficient distributions at angles of attack (a) of 0

and 7-t/? degrees are presentedfor the proposed vent and critical loading

locations in Figures A-i4 and A-i5.

There are two ways to vent each planetary vehicle compartment:

locate the vent on the forward bulkheads (concept A), or locate the vents

on the aft bulkheads (concept B). Both vent arrangements are studied.
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Because of the presence of external boundary layer flow adjacent to

each vent orifice on the shroud, the discharge coefficient of the sharp edge

orifice is a function of the pressure ratio across the vent, and the Mach

number of the external flow. The experLnaental data of References A-2 and

A-3 have beenincorporated in the present analysis to include the functional

dependence of the discharge coefficient upon the pressure ratio and Mach

number of the flow.

The free volumes of the compartments which must be vented are:

a) Voyager capsule: i050 ft3

b) Each planetary vehicle compartment: 6400 ft3

c) Nose fairing: 3800 ft3

d) Shroud center section: 970 ft3

e) Instrument unit and forward S-IVB skirt volume:

3700 ft3.

The nominal internal pressures within the above compartments at

launch are listed below:

a) Voyager capsule: 3.5 psig

b) Each planetary vehicle compartment: 0.5 psig

c) Nose fairing compartment: ambient pressure

d) Shroud center section compartment: ambient

pressure

e) IU/forward S-IVB skirt volume: ambient pressure.

Additional ground rules are:

a) There shall be a maxLrnum of 5 psi burst across

the shroud structure.

b) There shall be a positive pressure differential be-

tween the planetary vehicle compartment and adjacent

volume of not less than 0.5 psi, as long as the stage

is within the sensible atmosphere.

2. METHOD OF ANALYSIS

The size of the vent areas required to adequately vent the compart-

ments is determKned by considering the mass flow of the nitrogen leaving
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the compartments during the ascent portion of the trajectory. As the mis-

sile ascends there will be a net mass flow out of the compartment as the

volume of nitrogen contained within the compartment escapes through the

vent to the lowering external pressure at the vent location. If the compart-

ment is completely sealed everywhere except at a single vent, then the

mass flow through the vent is given by the following:
¥ P

<___e < 1, and
PFor subsonic flow through the vent, _-_)

• J Pe ] (subsonic)

_._X_
Pe Z y- 1

p - y+t
For sonic (choked) flow through the vent, and the mass

flow is independent of Pe:

m = -CdA PP g Y-1 (supersonic)

where p and p are the compartment pressure and density, respectively,

at any time, and the minus sign indicates that the mass of nitrogen within

the compartment decreases with time. Basically, these are simple nozzle

flow equations corrected for the effects of the actual non-nozzle geometry

of the vent by means of the discharge coefficient.

The discharge coefficient is defined as the ratio of the actual mass

flow to the mass flow calculated for isentropic flow through an equivalent

rounded-entrance converging nozzle having the same exit area as the

vent.

actual mass flow
Cd = isentropic mass flow

The discharge coefficient for a sharp-edged orifice is due primarily to

the contraction {vena contracta) in the stream following the orifice, hence

the product CdA can be thought of as an equivalent exit area of a smaller

converging nozzle, and thus all the aerodynamic flow parameters through

the vent can be described by isentropic flow relations. The discharge

coefficient is a function of the vena contracta, and either the pressure

ratio across the vent (for flow into stagnant air), or both the pressure

A-11



T_I_rSYST£M$

ratio across the vent and the Mach number of the flow past the vent open-

ing (for flow discharging into a moving stream).

The mass flow equations describe the characteristics of the nitrogen

in the vicinity of, and through the vent. It is then necessary to describe

the characteristics of the general gas mass in the compartment; in parti-

cular, it must be specified as to how the compartment gas density, P,

changes as the pressure in the compartment drops. The assumption is

made that the nitrogen remaining in the compartment expands adiabati-

cally. This means that a11heat inputs to the nitrogen are neglected, such

as that due to external aerodynamic heating, or that due to operation of

electrical equipment inside the compartment.

For an adiabatic process, the pressure and density are related by

= constant
p¥

The constant can be evaluated by considering the initial conditions of the

nitrogen in the compartment at t = 0 (launch). Thus,

and by substituting

__p_ Po

p_Y _y
Po

m

P - VOI,

where VOI_ = free volume of the compartment, then the pressure in the

compartment as a function of the mass of gas remaining in the compart-

ment is

Po rn_

p=

(Po v°i')_

By combining either the subsonic or supersonic mass flow equation

with the foregoing equation, a relation for the compartment pressure as

a function of the external pressure is obtained. A number of computer

programs have been set up which will give the exact relation for the com-

partment pressure as a function of time. For the Voyager analysis, these

consisted of TRW's CDRC Program AFCr4A and the G.E. Time Sharing

Programs designated "VOYAGE" and "BLAHS. "
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A

C d

m

rh

P

Pe

VOL

P

Po

NOMEN C LATUR E

area of vent, ft 2

discharge coefficient, dimensionless

mass of gas in compartment, slugs
dm

= d---_-' mass flow of compartment gas, slugs/sec

compartment pressure, lb/ft 2 absolute

local external pressure at vent location, lb/ft 2

compartment free volume, ft 3

ratio of specific heats

compartment gas density, slug/ft 3

compartment gas density at t = 0, slug/ft 3

3. NOSE FAIRING COMPARTMENT

The i2-i/2 degree frustum section of the nose fairing structure and

the cylindrical section of the nose fairing can not resist large crushing

pressures as efficiently as the 25 degree frustum nosecone. With this in

mind, and the fact that burst pressures must be limited to 5 psi rr, aximum,

the location for the nose fairing vent was chosen at station 3880, at approx-

Lrnately the mid-section of the t2-i/2 degree frustum. This location was

selected because the pressure coefficient distributions shown in Figures A-5

through A-t3 indicate that the external pressure in this region will be near

ambient. Therefore, with properly sized vents, only small crushing pres-

sures will be induced on the i?-t/7 degree frustum and no crushing pres-

sures will be induced on the cylindrical section. The somewhat significant

crushing load on the 25 degree forward portion should not impair its struc'

tural integrity.

The recommended nose fairing compartment vent area is 3.0 ft E if

the planetary vehicle compartments are vented aft, and is 8.9 ft E if they

are vented forward. There are two reasons for this large difference:

a) If the planetary vehicle compartments are vented
forward, their free volume must be considered in

sizing the vent holes of the compartment they are
venting into.
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b) A plot of the maximum pressure lag between the
internal and external pressure at the vent location

station 3880 (Figure A-16) shows that very large
pressure lags may exist if the vent area selected

is small and if the vent and/or aerodynamic charac-
teristics deviate only slightly from that anticipated.

In order to provide a compartment pressure which is approximately

independent of angle of attack, the vent area should be equally distributed

around the circumference of the shroud. The internal nose fairing com-

partment pressure history, together with the external pressure histories

at the vent and other critical loading stations, are represented in Fig-

ure A-iT. This figure indicates that for either fore or aft planetary com-

partment venting: The maximum collapsing pressure on the 25 degree

nosecone leeward meridian forward of station 3968 is 4. t psia and occurs

at approximately 75 seconds after liftoff, at Mach t. 3. The maximum

collapsing pressure on the t2.5 degree frustum is 0.45 psia and occurs

at station 3849 at approximately 68 seconds after launch, at a Mach num-

ber of t.05. Maximum bursting pressure at the t2.5 degree frustum/

shroud cylinder interface (station 3749) is 3.4 psia and occurs at approx-

imately 64 seconds after launch, at a Mach number of 0.90.

The internal pressure history of the nose fairing and the internal

pressure of the forward planetary vehicle compartment is shown in Fig-

ure A-i8. The maximum pressure differential is 0.8 psi at t = 62 seconds.

The vent areas were sized so that the pressure differential across

the vents would never exceed 0.6 psi. Therefore, the upper limit for the

internal pressure is the vent external pressure plus 0.6 psi. In order for

the internal shroud pressure to remain within these limits, a study was

conducted to investigate what effect leakage to either a low or high pres-

sure region would have ontheinternalcompartmentpressures. A leakage

area was assumed toexist at station 3964 on the nose fairing compartment.

This location was chosen because it is the least desirable location, the

region of lowest external pressure. The leakage analysis shows that if the

total leakage area is less than i0 square inches the internal pressure would

not fall more than 0. i psi below the previously determined compartment

internal pressures. Another critical area investigated for possible leakage

was on the 25 degree nosecone forward of station 3964 where there is high
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external pressure. The study showed that if the total leakage area is less

than 5 square inches the compartment pressure will not exceed the pre-

viously determined internal pressure by more than 0. I psi.

Venting on the IZ-i/2 degree frustum could result in excessive cross

flow through the nose fairing compartment at angles of attack. Therefore,

the effects of any inflow into the nose fairing compartment was investi-

gated. In order to simplify this study, one-halfof themaximumconcept A

vent area (4.44 square feet) was considered lumped on the windward

surface of the nose fairing at station 3880, and one-half lumped on the lee-

ward surface at station 3880, and the vehicle was considered at an angle of

attack of _ = 7-I/2 degrees. Figure A-19 shows that the internal pressure

"follows" the external pressure on the windward surface more clos ely than

it follows the external pressure on the leeward surface, deviating a maxi-

mum of _C.2 psia. This is a desirable result as it indicates that crush-

ing loads will be lower on the compressive side of the nose fairing structure

than on the tens ion side. At an angle of attack a = 7-t/2 degrees, the in-

flow reaches a velocity of 27 ft/sec and a dynamic pressure of t4. 5 psia.

It does not appear likely that any harmful loads could be imposed uponany

nose fairing equipment or the biological compartment by the inflow con-

ditions; however, it is conceivable that a local "hot spot" could be present

on equipment in a direct line with the vent due to the rapidly rising stag-

nation temperature of the inflow after liftoff. Small deflectors to diffuse

the inflow and direct it away from the equipment would be sufficient to re-

lieve this condition since the overall compartment temperature would be

low. This is due to the rapid venting of the compartment (in spite of the

local inflow) causing the gas temperature in the compartment to drop.

4. SHROUD CENTER SECTION COMPARTMENT

The vent area required to adequately vent the shroud center section

compartment is 0.87 ft 2 (vent concept A) and t. 5 square feet (vent con-

cept B). In order to provide a compartment pressure which is approxi-

mately independent of angle of attack, the venting area should be equally

distributed around the circumference of the section at station 3529. As

explained before, the discharge coefficient is dependent both on the Mach

number of the flow and the pressure ratio across the vent opening. A plot
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of the maximum pressure lag between the internal compartment pressure

and the external pressure at the vent location is presented in Figure A-Z0.

The required vent area will result in a maximum pressure lag of 1.7 psi.

Assuming no leakage area, the internal compartment pressure history and

the external pressure at the vent opening are presented in Figures A-21

and A-ZZ for vent concepts A and B, respectively. These figures show

that for:

a) Concept A - The maximum bursting pressure on this
section of structure, which occurs on the leeward

meridian, is 2.4 psi and occurs at station 3597 at

t = 62 seconds, when the Mach number = 0.85. The

maximum bursting pressure on the leeward meridian

at station 3461 is t.7 psi and occurs at t = 67 seconds,

when the Mach number = t.0. No collapsing pres-
sures occur on this section.

b) Concept B - The maximum bursting pressure at
station 3597 is 2.2 psi and occurs 62 seconds after
liftoff, at a Mach number of 0.85. The maximum

bursting pressure at station 3461 is t. 3 psid and
occurs 82 seconds after liftoff, at a Mach number
of t.6.

5. INSTRUMENT UNIT/FORWARD S-IVB SKIRT

The vent area required to adequately vent the instrument unit (I/U)

compartment is t. 0 ft 2 for concept A and Z.4 ft Z for concept B. A plot

of the maximum pressure lag between the internal compartment pressure

and the external pressure at the vent locations is shown in Figure A-23.

The required vent area will result in a maximum pressure lag of t. 25 psi.

Assuming no leakage in the I/U, the internal and external pressure his-

tories at the vent are presented in Figure A-24. The maximum bursting

pressure on the I/U compartment structure is i. 3 psia and occurs on the

leeward meridian along the entire section length at t = 70 seconds and at

a Mach number = i.t. No collapsing pressure occurs on the structure.

These conclusions apply to both vent concepts.

6. CAPSULE

The vents for the capsule were sized so that the pressure differental

across the capsule would not exceed 3.0 psi. Because of the planetary

vehicle compartment interchangeability requirement, the largest vent area
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Figure A-22.
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required for either must be used for both capsules. The capsules vent

into the interior of the planetary vehicle compartments which, for the anal-

ysis, are assumed to be at the external ambient pressure at the vent loca-

tion. This assumption will result in larger pressure differentials across

the capsule walls for a given capsule vent area than would actually be

anticipated, since the exhaust pressure is typicallyhigher than atmospheric.

A plot of the variation of maximum pressure lag with vent area is pre-

sented in Figure A-24. Since there is no flow past the vent opening, the

discharge coefficient is a function only of the pressure ratio across the

vent opening. The capsule pressure lag is essentially independent of the

vent concept.

In order to satisfy the contamination criteria, control valves (check

valves) are required for the capsule vents. In this way there is assurance

that there will be no flow into the capsule of possibly contaminate gas. As

shown in Figure A-25, as the area of the valve opening decreases the pres-

sure differential across the capsule wall increases very rapidly. It there-

fore is prudent to avoid a valve area which corresponds to this portion of

the curve, for if the flow out is in any way restricted or if the valve area

is slightly undersized, the differential will get very large. A 0. Z5 square

foot unit area (minimum) is required.

The controlled valve remains closed as long as the pressure differ-

ential across the capsule is 3.0 psi or less. As the external (i.e., plan-

etary vehicle compartment) pressure decreases and the pressure differential

begins to exceed 3.0 psi, the valve begins to open. For small openings,

the pressure may continue to build up, which will tend to open the valve

farther. In its fully opened position, corresponding to the minimum re-

quired area, the pressure differential will be 3.0 psi. As described in

Section 2. Z, the controlled valves must have a solenoid-type override to

completely vent down the shroud section before any separation events.

7. PLANETARY VEHICLE COMPARTMENT

The vents for each planetary vehicle compartment were sized such

that the burst pressure differential across the compartment walls would not

exceed 0.5 psi. Because of the compartment interchangeability require-

ment, the largest vent area required for either of the compartments must

be used for both compartments. The forward and aft compartments vent
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into volumes that are assumed to be at the external pressure that

exists at the vent opening. A plot showing the variations of the maximum

pressure lag with vent area is presented in Figure A-25. To satisfy the

contamination criteria, controlled valves are required similar to those of

the capsule as described in paragraph 6, except that the differential pres-

sure is 0.5 psi.

Internal pressure histories for the capsules, planetary vehicle com-

partments and shroud compartments, together with the external pressures

at the vent locations, are shown in Figures A-Z6 and A-Z7. The pressure

lag across each element is essentially the same for both vent configurations.

A comparison of the internal pressure history of the shroud center

section and the internal pressure of the forward planetary vehicle compart-

ment is presented in Figure A-Z8 for vent concept A. The maximum pres-

sure differential across the bulkhead is 0.5 psi and occurs at t = 6Z seconds.

The internal pressure history of the instrument unit and the internal

pressure of the aft planetary vehicle compartment is presented in Figure

A-Z9 for vent concept A. The maximum pressure differential across this

bulkhead is 0.5 psi and occurs at t = 95 seconds.

The pressure histories of the aft planetary vehicle compartment and

the shroud center section are presented in Figure A-30 for vent conceptB.

The maximum burst pressure across the bulkhead is 0.8 psi and occurs

70 seconds after launch. This bulkhead is designed to withstand a burst

pressure of 5.0 psi(Section Z. 5.5).

8. RESULTS AND RECOMMENDATIONS

The analysis results and vent system design recommendations for

Concept B are summarized below:

Nose Fairing Compartment

a) Required vent area, A = 3.0 ft2. Eight vent holes

will be equally spaced around the nose fairing cir-

cunqference centered near station 3880;

b) Load

• The maximum collapsing pressure on the

nosecone (forward of station 3964) is 4.1 psid
and occurs at t = 75 seconds and at Mach num-

ber M = I. 3.
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The maximum collapsing pressure on the 12-I/2 de-

gree frustum section is 0.45 psid and occurs at
station 3849 at t = 68 seconds and at Mach number

M = 1.05.

The maximum burst pressure in the nose fairing is

4.8 psid and occurs at the 25 degree nose cone -

12-i/2 degree frustum interface {station 3964) at

t = 66 seconds and Mach number M = 0.95.

The maximum burst pressure at the 12-i/2 degree

frustum - cylinder interface (station 3749 is 3.4 psid
and occurs at t = 64 seconds and Mach number M = 0. 9.

c) Leakage area at station 3964 and station 3749 (low external

pressure regions) may not exceed a total of I0 in Z.

d) Leakage area on the nose cone (forward of station 3964;

high external pressure region) may not exceed 5 in 2.

e) No harmful loads will be imposed on any nose fairing

equipment as a result of inflow under an angle of attack

condition a = 7-i/2 degrees.

f) It is conceivable that a local "hot spot" could occur on

equipment in a direct line with the vents due to rapidly

rising stagnation temperature of the inflow approx-

imately 50 seconds from liftoff. Smalldeflectors, to

diffuse the inflow and direct it away from the equipment,
would be sufficient to relieve this condition. The over-

all compartment temperature would be low.

Shroud

a)

Center Section Compartment

Required vent area, A = 1.5 ft 2. Eight vent holes will

be equally spaced around the section circumference at
station 3538.

b) Loads

The maximum burst pressure is 2.2 psia and
occurs at station 3597 at t = 62 seconds and

Mach number M = 0.85.

The maximum burst pressure at station 3461

is I. 3 psia and occurs at t = 82 seconds and

Mach number, M = 1.6.

• No collapsing pressures occur on this section.
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Instrument Unit Compartment

a) Required vent area, A = Z. 4 ft 2. Eight vent holes

will be equally spaced around the section circum-
ferences at station 3264.

b) Loads

The maximum burst pressure on the section

is I.3 psia and occurs at t = 70 seconds at

Mach number M = i. I.

• No collapsing pressures occur on the section.

Planetary Vehicle Compartments

a) Required vent area is A = 1.5 ft 2.

b) Controlled venting is recommended (check valves);

use of four individual vents is recommended to en-

hance reliability.

Voyager Capsules

a) Required vent area, A = 0.25 ft2.

b) Controlled venting is recommended (check valves).

A-1

A-Z
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APPENDIX B

SPRING PERTURBATION ANALYSIS

(GUIDED VERSUS UNGUIDED SEPARATION)

An analysis was performed to establish the probability of reeontact

of planetary vehicles and shroud elements during separation and to identify

the optimum separation planes for nose fairing, shroud, and planetaryve-

hicle separation. By varying the nose fairing separation plane and by

treating the spring force perturbation as a two-part problem it is concluded

that the optimum arrangement required guiding the planetary vehicle, lo-

cating the separation plane 4.6 feet below the capsule maximum diameter,

and allowing the nose fairing and shroud center section to separate unguided.

The analysis initially assumes that the planetary vehicle separates

unguided. The two spring perturbation forces are:

i) A lateral component of the spring force due to a

misalignment of the force vector of the spring with
the geometric axis of the spring.

2)

Spring Force Misalignment

A lateral component of the spring force due to mis-

alignment of the two ends of the spring.

Spring Misalignment

B-i
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A standard deviation (_) for both lateral velocity and tumble rates

was determined by taking the square root of the sum of the square of the

expected variation in lateral velocity and tumble rates due to each spring.$

_vf = _n (Evf} 2

whe re
n --

Evf :

E =
vs

E
¢0s :

o"
vs

o"
{DS

in (Evs)2

n (E s)2

o-¢of = _/n (Ecof)2

number of springs

variation in lateral velocity due to spring

force misalignment

variation in lateral velocity due to spring

misalignment

variation in rotation rate due to spring

misalignment

variation in rotation rate due to spring

force misalignment

The above standard deviations were computed for both spring

force misalignment (assumed to be t percent of axial force} and spring

misalignment (assumed to be 1 ° of nominal).

The probability of failure can be determined by computing Z (the

number of standard deviations needed for collision}. Assuming a two-

tailed distribution, the probability of failure (P) can be determined from

tables relating (P) to Z.

(Zs) are given by

The values of Z for spring force misalignment

6 6
collision collis ion

Zf - Z -
' s 5 s5f

TRW memo 67-3522. 1-111, "Basic Language Program for Spring

Separation of Spacecraft, " Z9 August 1967.
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where

6collis ion = clearance between planetary vehicle and
shroud

6f = lateral displacement due to spring force
mis alignment

= t [_vf +_ojf (h)]

6 = lateral displacement due to a spring
s

m isalignm ent

= t [_vs +_,0s (h)]

t = time necessary for planetary vehicle to fly

out of shroud

h = height of planetary vehicle center of mass

above the separation plane

The total probability of collision (P) is

P = Pf + Ps - PfPs

There are two questions of interest:

t) What is the maximum nose fairing length such that it can

still be flown over the capsule maximum diameter

unguided ?

z) What is the probability of collision for a guided plane-

tary vehicle flying out of its shroud ?

Considering the first question let the design criterion be Z = 4.5

minimum which for a normal distribution gives a probability of collision

of (P) = 3.4x 10 -6.

The time allowed for the fairing to clear the maximum capsule

diameter without collision is given by:

6collis ion
t =

z [_v +_w (h)]

where

6 collision

0-
v

= clearance between fairing and

planetary vehicle

= number of standard deviations

needed for collision

= standard deviation for lateral

velocity
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0- = standard deviation for tumble
w

rate

h = height of fairing c.g. above

separation plane

Considering no c.g. offset of the fairing and a four-spring separa-

tion system (assuming i ° misalignment and a lateral spring force of

t percent of axial, per spring) giving the fairing a velocity of 2 ft/sec,

t was foundtobe 2.3 seconds. The quantities used in the above analysis

are as follows:

5
collis ion = 3 in.

= O. t86 in. /sec
v

0- = 0.0012 rad/sec
w

h = 187 in.

Although there is only a Z-inch nominal radial clearance between capsule

maximum diameter and the limits of the planetary vehicle dynamic en-

velope, 3 inches were used in this calculation as being more representa-

tive of the physical shroud. The value of h used is equivalent to a fairing

length extending to 4. 6 feet aft of the capsule maximum diameter.

Thus, it is concluded that such a fairing can clear the capsule with-
-6

out guidance with a probability of collision of 3.4 x t0

The problem of a guided planetary vehicle will now be considered.

The planetary vehicle will be spring ejected, but will be guided out of its

shroud hole. It has been assumed that the rollers used to guide the plane-

tary vehicle will be located at the separation plane. The planetary vehicle

will be restrained from moving laterally, but will not be rotationally

restrained.

Two other variations have been included. They are a c.g. offset of

0. 25 inch and a spring position offset of 0. I inch. The spring position

offset will be lumped together with the c.g. offset and a 0. 35 inch c.g.

offset will be the only variation considered.

The value of z as a function of time was computed for the above

situation. The minimum z was found to be approximately 15, which cor-
-50

responds to a probability of 10
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The equation used was

6collision
Z :

tcr h
w

where

collis ion = clearance between planetary
vehicle and shroud

t = time after separation

0"
w

= standard deviation of the tumble

rate due to 0.35 c.g. offset

k = height from rollers to top of
shroud hole

where

k
o

k=k -vt
O S

initial height of shroud opening

above planetary vehicle separa-

tion plane

v = velocity of planetary vehicle
s

The quantities used in the above analysis are as follows:

6
collision = 3 in.

: 0.000338 rad/sec
w

k = t63 in.
o

v = 12 in. /sec
S

It is concluded that no rotational control in guiding planetary

vehicles is required, and that the collision probabilities are very small

with a shroud separation plane as far forward as the capsule maximum

diameter.
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APPENDIX C

NOSE FAIRING COLLISION PROBABILITY ANALYSIS

The probability that the nose fairing and stage will collide was

calculated with the aid of "Description of Design Considerations for the

Voyager 1971 Spacecraft Utilizing the Saturn ILl Launch Vehicle Config-

uration," JPL Report PD-86, June i966. The probability of impact (Pi)

between the nose fairing and the stage is (see Figure C-I)

2 -R2/2_R2
p. ._ r

z 2 e , for _R>>r
Z _R

where
r = impact radius

R = normal distance between fairing and launch vehicle

CR = position dispersion of the fairing and launch vehicle

The parameter _R is the root sum of the squares of the 10- position

uncertainties of the fairing (_s) and launch vehicle (_v)

_S 2 2_R = + _V

FAIRING I

F-r- _AL

L .,i,'
COLLISION CORRIDOR OF ORBIT
VEHICLE WITH FAIRING

j J

OR_.._=IT _ VOYAGER I SATURN IV

CONFIGURATION

L

VELOCITY OF

LAUNCH VEHICLE

Figure C-l. Geometry of Collision
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The impact radius can be expressed as

r -_

( d)s + sin @ i + tan---"--8-

where
s is the diameter of the fairing

is the length of the launch vehicle

d is the diameter of the launch vehicle

is the angle between longitudinal axis of launch

vehicle and velocity of launch vehicle with

respect to shroud

For maximum r,

9. 31 x i0-3 mile.

= 65.8 ° . With _, s and d given, r =
' max

Maximum r was used in all probability calculations.

The launch vehicle dispersion (_) was taken to be 10 meter/sec of
v

burning time, where the burning time was calculated from

T = Z_

and the S is the arc distance of the fairing ahead of the stage at reignition.

The dispersion of the fairing (_s) can be obtained from

= _ AV T
s .. C

where T is the coast time from ejection of the fairing to reignition,
c

_E is the l_ execution accuracy which was taken to be 0. 01, and AV is

the separation velocity. In the table below, collision probability is given

for the critical coast times from ejection to reignition for various V's.

Table C-I. Collision Probability

T AV
c AV= z AV=4 AV=6 AV=8

(rnin) = t(ft/sec)

14 2.06 x I0 -4 7.38 x I0 -I0 1.79 x 10 -18 3.86 x 10 -25 2.21 x 10 -36

15 9.16 x 10 -6 4.82 x 10 -14 4.22 x 10 -29 l. Z9 x 10 -40 7.33 x 10 -59

16 2.01 x 10 -6 2.91 x 10 -22 5.57 x 10 -52 8.02 x 10 -75

17 5.11 x 10 .8 4.30 x 10 .43 -- -- --

18 2.31 x 10 -10 -- -- -- --

21 2.00 x 10 -30 ....
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Table C-I. Collision Probability

T
c

(min)

AV

= l(ft/sec)

AV = 2 AV = 4 AV = 6 AV = 8

14

15

16

17

18

21

2.06 x t0 -4

9.16 x 10 -6

2.01 x t0 -6

5.1t x 10 -8

2.3t x t0 -t0

2.00 x 10-30

7.38 x I0 -I0

4.82 x I0 -14

2.91 x 10 -22

4.30 x 10 -43

1.79 x 10 -18

4.22 x 10-29

5.57 x 10 -52

3.86 x 10 -25

1.29 x 10 -40

8.02 x 10 -75

2.21 x 10 -36

7.33 x 10 -59
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APPENDIX D

POST- INJECTION COLLISION PROBABILITY ANALYSIS

The planetary vehicles are separated by a series of spring systems

after insertion into the Mars transfer orbit. The separation sequence will

be as follows: upper planetary vehicle, shroud center section, lower plane-

tary vehicle (see Figure D-I).

l PV

V1 _ ml

KI

S

PV

SIVB

m2

__PV

I SIVB I

MULTI-SEPARATION SEQUENCE

@
V3 _V m5

K,

rn6

Figure D-1. Post-Separation Collision Probability Model

There are three design criteria for the spring separation system:

i) The spring separation system of each planetary
vehicle to be interchangeable.

z) The spring separation system used to separate the
nose fairing must be the same as the one used to
separate the shroud center section.

3) The spring system should be designed so that the

nominal velocity of the shroud center section falls
midway between the nominal velocities of the two

planetary vehicles. This would yield the same
probability of collision between upper planetary
vehicle and shroud section as between the shroud

section and lower planetary vehicle assuming any
variation in each separation does not affect the
other separations.
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To establish the likelihood of collision is to establish what the proba-

bility (P) is that any one component will have the same velocity as any other

component due to variation in the nominal values of separation potential

energies. This analysis is conservative by neglecting the time lag between

separation events. Covariance, or the effect of one separation on another,

was included in the analysis. Lateral and rotational motion during

separation was not included. This analysis is clearly conservative then

since lateral dispersions are ignored.

The following parameters were used in the analysis: (Figure D-I)

V I = velocity of upper planetary vehicle

V 2 = velocity of shroud center section

V 3 = velocity of lower planetary vehicle

K I = twice the potential energy of the first separation

K 2 = twice the potential energy of the second separation

K 3 = twice the potential energy of the third separation

m I = mass of upper planetary vehicle

m 2 = mass of shroud center section, lower planetary
vehicle, and S-IVB

m 3 = mass of shroud center section

m 4 = mass of lower planetary vehicle and S-IVB

m 5 = mass of lower planetary vehicle

m 6 = mass of S-IVB

The velocities above are with respect to a coordinate system that has

the velocity of the entire stage after completion of Mars trajectory insert-

ion, but before the first planetary vehicle separation.

TRW Memo 67-3343. 5-19, "Voyager Shroud Separation Studies,"

19 September 1967.
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Using conservation of energy and momentum the velocity of each

component can be determined:

v i -- (Ki/ai) i/2

V 2 = (K2/a2)t/2 - (Kt/a 3)

= 12_ (K2la5)V 3 (K3 la4)l _ (K I/a3)I/2

where
a t

a 2

a 3

a 4

a 5 = m 4 =

Using design criteria, i, 2, and 3 which state that

K i = K 3 = cK (due to design criterion i)

K z = K (a known quantity due to design criterion 2)

V i + V 3

2 - V 2 (design criterion 3)

the constant c relating the two separation potential energies can be

determined as

C -"

2 t -%2

)
? i + ta3

+
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Given the AV of the nose fairing separation and the spring constant K

of the separation springs used to attain it, the required spring constants

for the remaining separations can be calculated using the above design

criteria and equations.

The probability that any section will collide with another can be ob-

tained by dividing the relative velocity between the two sections by the

standard deviation (_) in this quantity and using that number (z) of standard

deviations to determine the probability from a table of two-tailed normal

distributions. The values of z considered will be as follows:

V I - V 2

z I -

V 2 - V 3

z2 - _2

V i - V 3
Z ----

3 _3

Where the standard deviations _t' _Z' and e3 are given by:

= _/ Var(Vt) + Var(Vz) - Z Coy (ViV 2)

_2 = _/Var(V2) + Var(V3)- 2 Coy (V2V 3)

_3 = _]Var(Vt) + Var(V3)- 2 Coy (ViV 3)

The terms under the radical signs are elements of the covariance matrix:

Cov I =

Var (Vl) Coy (VlV 2) Cov (VlV 3)

Coy (VzV I) Vat (V2) Coy (VzV 3)

Cov (V3V I) Cov (V3V2) Vat (V 3)
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This matrix is obtained as follows:

IIT =

is theinfluence matrixand [Z_K 2]

Cov.]

is a diagonal matrix with the

variance of the K's (twice the potential energy of separation) on the diagonal.

The influence matrix has the form:

8V t

8K t

8V 2 8V 2

8V 3 8V 3 8V 3

8K t 8K 2 aK 3

where
aVi )-iIZ

= iIZ (K i

aVz iIZ

av3 iIZ

= 112 (K3)-

avz iIZ

= -112 (Ki)-

aV3 t IZ
= -i/2 (KI)-

8V3

:
D-5
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The. variance matrix has the form:

(AcK) 2

After substitution of the above into the equation for the covariance matrix

its terms take the form:

2

C°v,Var (VI) = k-_-_i

(ovz K)2 {Ov2 )zVar(Vz) = \-_-_ _c + \_ aK

<or,°4' <ov, , <ov,--I'
0V 2 0V 1 (AcK) 2

Cov (VlV2) = Cov (V2Vt) = 0K t 0K t

OV 2 OV 3 OV 3 OV2

Coy (VzV3) = Coy (V3V2) - OK I OK I (&cK) 2 + OKz OK2 (A K) 2

OV 3 OV I
( Zi cK) 2

Coy (VtV3) = Coy (V3Vt) - 0K i 8K i

Now *t' "2' and "3 can be calculated, and in turn the z i can be cal-

culated. These values of Zl, z 2, and z 3 now determine, with suitable

tables of probability, the probability (Pt' P2' and P3) of collision between

the first planetary vehicle and the shroud midsection,-the shroud midsection

and the second planetary vehicle, and, included for completeness, the

probability of collision between the first and second planetary vehicles.
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Given the component masses, velocities and spring rates and assum-

ing a 2 percent deviation in the spring constant, collision of any two ele-

ments would occur in less than one time in one million.

K and cK be 2 percent (or

K's be:

As an example let the nose fairing AV = t ft/sec and deviations in

AcK= 0.02 cKand AK= 0.02 K) and masses and

2
m i = 69.4 Ib-in. /sec

m 2 = 178.2

m 3 = 13.7

m 4 = 164.5

m 5 = 69.4

m 6 = 95. i

K = 1125 ib-in.

cK = 6060

The computations were performed on a digital computer giving for the

above case z t = t7, z 2 = t9.8, z 3 = 36.6, and c = 5.38. The probabilities

corresponding to the above z's are Pt = t0 -64, and P2 = i0-88 and

P3 = I0-283

For the recommended nose fairing separation velocity of 2 ft/sec the

collision probabilities will be correspondingly less.
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APPENDIX E

SEPARATION SHOCK ENVIRONMENTS

The planetary vehicles will be subjected to shock loads generated by

the pyrotechnic separation mechanisms. Experience has shown that

separation shocks produced by explosive (or pyrotechnic) devices may cause

malfunctions or deterioration of performance in electronics and electro-

mechanical packages located near or in a direct shock transmission path.

The severity of the shock environment will be determined by the type of

separation methods employed. Specification of shock tests will be based

on structural configuration and location of equipment and components.

References E-l, E-Z, and E-3 describe the types of environments en-

countered with pyrotechnic devices.

The shroud and planetary vehicle separation concept results in a

total of four separate shock events: the nose fairing and upper shroud

separation, the forward planetary vehicle's separation from its adapter,

the shroud center section, and finally the second planetary vehicle sepa-

ration. But since the nose fairing separation plane is far from the shroud/

adapter interface, structural attenuation of the shock will render it harm-

less. The only shock loading of concern then, is planetary vehicle

separation.

The shock environment for sensitive equipment will be that which is

transmitted through a series of structural members and discontinuities.

These structural discontinuities (which constitute impedance mismatches)

include panel attachment points, the equipment module/propulsion module

interface and equipment component attachment brackets on the equipment

module.

The wide variation in the severity of the separation shock with type

of separation device and amount of intervening structure, combined with

the difference in type of shock sensitive equipment and distribution of the

equipment locations, results in the requirement for specification of more

than one shock level for realistic equipment design and test. The shock

test level specified for a component or group of components will be based

on structural location (by designated zones) and the most severe antici-

pated shock from planetary vehicle separation.
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The designation of at least three zones may be required. The first

zone would include bracket mounted components in the equipment module.

Equipment and components on the upper portion of the equipment module

structure near the capsule adapter would be in a second zone, and equip-

ment attached to the propulsion module near the separation plane would be

in the third zone.

1. SEPARATION DEVICES

The standard types of explosive separation devices employed are

electro-explosive/frangible nuts and bolts. The fasteners are fractured

or destroyed so that adjacent units are free to separate. Explosive nuts

produce the mildest shocks.

When the fasteners are fractured, the peak amplitude accelerations

will be confined to a relatively small area around each joint. The struc-

tural modes excited in the radial direction are dependent on the number

and spacing of the explosive bolts or nuts. The transient accelerations

produced by the springs extending and separating the units will be pri-

marily in the longitudinal direction and of insignificant magnitude com-

pared to the cxplosive shock.

2. EXPLOSIVE SEPARATION SHOCK DESCRIPTION

2. 1 Shock Characteristics

The characteristic transient excitation or shock due to explosive

separation is a complex wave form consisting of high amplitude, wide

frequency range acceleration components. In many instances, the shock

pulse can be described as a very short duration random vibration excita-

tion with modulated peak accelerations. The peak accelerations in struc-

tures at separationplanes typically range from several hundred to several

thousand g's, and the frequencies of the acceleration components range up

to 10,000 Hz (which is usually the upper frequency limit of measuring sys-

tems). Typical pyrotechnic shock data are shown in Figure E-1.

A shock pulse measured at a considerable distance from a Delta

fairing separation plane in a recent test where explosive nuts were used
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Figure E-I. Pyrotechnic Shock Data: Typical Curves for Release

Device Explosions
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for separation is shown in Figure E-l(a). The peak accelerations were

approximately 25 g. The associated shock response spectra also shown

in Figure E-l(a) indicate that elements of a component mounted at the

measurement location could experience 60 to IZ0 g (0-peak) acceleration

in the frequency range 300 to 1000 Hz. A typical acceleration record of

separation shock on structure adjacent to an explosive joint (skin cutting

mechanism) is shown in Figure E-l(b). This represents one of the more

severe shock environments encountered by spacecraft components. How-

ever, this level of shock excitation would apply onlyto components attached

to the joint structure within a relatively short distance from the separation

plane. The response of elements of a component to this type of shock ex-

citation is partially defined by the associated acceleration (or shock) spec-

tra curve shown in Figure E-l(b). For comparison, the response spectra

for a half sine shock pulse are also shown.

The type of shock pulse at the base of a component located on space-

craft structure at some distance from a fairing separation joint is illus-

trated by Vela test data shown in Figure E-l(c). The magnitude of the

peak acceleration is of course much less than that measured at the separa-

tion joint. The shock response spectra associated with the excitation at a

Vela component base are also shown in Figure E-l(c).

2.2 Structural Response

The nature of the damaging transient excitation is such that there is

poor repeatability for the response of apparently identical structural sam-

ples to the shock, and there is wide variation in response in different parts

of the structure. The dynamic response characteristics of equipment sup-

port structure involve complex modes of excitation, which are important

to consider only in the local region of the equipment.

The localized structural response resulting from the transient exci-

tation is highly dependent on the separation mechanism and the vehicle

structural design in the region of separation. The separation shock excites

many structural modes, but the damaging portion of the shock excitation

will have frequency components associated with the local natural frequen-

cies and the higher modal frequencies of the overall structure.
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3. STRUCTURAL ATTENUATION

Pyrotechnic shock measurements have shown that in typical space-

craft payload structure there is a marked decrease in acceleration

amplitude with increase in length and complexity of the transmission path.
Reduction ratios of as much as i to 10 are associated with distance in-

creases of I0 to i (the relationship is not necessarily linear). The amount

of attenuation of shock magnitude is related more to the number of

structural discontinuities (stiffeners, bulkhead and stringer attach points)

and mass loading by components along the transmission path rather than
to structural (material) damping. The transient acceleration magnitude

reduction is 40 or 50 percent across a structural stiffener. The addition

of a massive (relative to the weight of local attachment structure) com-

ponent at a measurement location in the shock transmission path has been

observed to reduce the shock magnitude by greater than 50 percent.

4. DETERMINATION OF SHOCK LEVELS

The foregoing sections have presented general descriptions of the

proposed Voyager payload configuration and separation devices, and the

types of shock excitation associated with pyrotechnic separation. The

shock pulses and response spectra shown in Figure E-I represent the

type of excitation and possibly the range of magnitude of shock levels that

will be incurred by components in the Voyager payload. However, more

specific information about (1) the shock measurements shown in Figure

E-I, (2) the structural dimensions and component weights and locations

in the Voyager payload, (3) the separation device type, size, amount of

charge, and amount of material to be severed, and (4) the separation point

locations (relative to the components) and firing sequence is required to

extrapolate to or estimate shock pulse magnitudes and response spectra

for specifying shock design and test criteria.

5. RECOMMENDATIONS

The Voyager Environmental Predictions Document (Reference E-4)

is limited to predictions of actual environments and does not include con-

siderations of factors appropriate to definition of formal test requirements

or generation of design criteria. The ignition staging and separation shock

environment presented in Reference E-3 is based on Mariner Mars (1964)
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spacecraft data in which pretensioned V-bands were released by pyrotech-

nic bolt cutters to perform shroud and spacecraft separation. The shock

pulse estimated as inducing response equivalent to the separation pulse

was a Z00 g (0-peak) terminal peak sawtooth of approximately I millisec-

ond duration. Investigation of available shock data and the proposed

Voyager concept configuration and separation devices indicates that lack

of specific detail prevented direct determination of estimates for magni-

tude of shock excitation at components. Therefore, additional empirical

and theoretical analyses are recommended to determine realistic design

and test criteria for the separation shock environments of the Voyager

payload unit components.

An estimate of the range of response spectra for test criteria for

the Voyager components is shown in Figure E-Z. This estimate was ob-

tained from the data shown in Figure E-l(a) and E-l(b). The lower re-

sponse curve is applicable to larger components at same distance from

the separation point and the upper response curve is for smaller com-

ponents. It is possible that zoning could be established on the basis

of both component size and location relative to the separation point. Both

upper and lower limits are shown for each response curve. The width of

the limits is based on the range of amplification factors assumed for

elements of components and the limitations on test repeatability by the

testing equipment.

It should be noted that this type of test specification indicates the re-

quired shock response to be obtained at the test specimen rather than giving

the shock pulse shape to be used for the test.

The amount of uncertainty associated with the estimates of the range

of response spectra has not been determined. If more accurate estimates

are required for specifying shock design and test criteria, then the follow-

ing recommendations must be considered:

a) Search for separation shock measurement data more

directly applicable to the Voyager case in regards to

type of separation device, charge size, measurement
location, etc.

b) Establish strength of shock pulse expected at point(s)

of separation in Voyager payload.
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Figure E-2. Spacecraft Components Shock Response Spectra
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c)

d)

Determine most direct transmission path to compo-
nents on structural members containing groups of
components ; dimensional details, number of struc-
tural discontinuities, weights of components.

Estimate shock acceleration amplitude and duration
for various zones or component locations. Establish
type of response spectra which best represents the
input excitation to the components.
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